BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24863793)

  • 1. In situ fabrication of electrochemically grown mesoporous metallic thin films by anodic dissolution in deep eutectic solvents.
    Renjith A; Roy A; Lakshminarayanan V
    J Colloid Interface Sci; 2014 Jul; 426():270-9. PubMed ID: 24863793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ fabricated polymer-silver nanocomposite thin film as an inexpensive and efficient substrate for surface-enhanced Raman scattering.
    Hariprasad E; Radhakrishnan TP
    Langmuir; 2013 Oct; 29(42):13050-7. PubMed ID: 24106915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoration of Micro-/Nanoscale Noble Metal Particles on 3D Porous Nickel Using Electrodeposition Technique as Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte.
    Qian X; Hang T; Shanmugam S; Li M
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15716-25. PubMed ID: 26125300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells.
    Steichen M; Thomassey M; Siebentritt S; Dale PJ
    Phys Chem Chem Phys; 2011 Mar; 13(10):4292-302. PubMed ID: 21249244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SERS activity studies of Ag/Au bimetallic films prepared by galvanic replacement.
    Wang C; Fang J; Jin Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():820-4. PubMed ID: 22925909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Water Content of Deep Eutectic Solvent Ethaline in the Anodic Process of Gold Electrode.
    Wu JD; Ding Y; Zhu F; Gu Y; Wang WW; Sun L; Mao BW; Yan JW
    Molecules; 2023 Mar; 28(5):. PubMed ID: 36903545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Au nanoparticles formed by in situ electrodeposition on direct electrochemistry of myoglobin loaded into layer-by-layer films of chitosan and silica nanoparticles.
    Guo X; Zheng D; Hu N
    J Phys Chem B; 2008 Dec; 112(48):15513-20. PubMed ID: 19006267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying.
    Cherevko S; Kulyk N; Chung CH
    Nanoscale; 2012 Jan; 4(2):568-75. PubMed ID: 22139451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode.
    Mirceski V; Gulaboski R
    J Phys Chem B; 2006 Feb; 110(6):2812-20. PubMed ID: 16471890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep eutectic solvents: sustainable media for nanoscale and functional materials.
    Wagle DV; Zhao H; Baker GA
    Acc Chem Res; 2014 Aug; 47(8):2299-308. PubMed ID: 24892971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed fabrication of ordered porous au/ag nanostructured films for surface-enhanced Raman scattering substrates.
    Lu L; Eychmüller A; Kobayashi A; Hirano Y; Yoshida K; Kikkawa Y; Tawa K; Ozaki Y
    Langmuir; 2006 Mar; 22(6):2605-9. PubMed ID: 16519460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.
    Chang CC; Yang KH; Liu YC; Yu CC; Wu YH
    Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanopatterning palladium surface layers through electrochemical deposition and dissolution of zinc in ionic liquid.
    Jiang J; Zhang L; Wang X
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12689-94. PubMed ID: 24221907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.
    Choi S; Ahn M; Kim J
    Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-enhanced raman scattering on dendrimer/metallic nanoparticle layer-by-layer film substrates.
    Goulet PJ; dos Santos DS; Alvarez-Puebla RA; Oliveira ON; Aroca RF
    Langmuir; 2005 Jun; 21(12):5576-81. PubMed ID: 15924492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical co-deposition of conductive polymer-silica hybrid thin films.
    Raveh M; Liu L; Mandler D
    Phys Chem Chem Phys; 2013 Jul; 15(26):10876-84. PubMed ID: 23698356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability.
    Fan M; Brolo AG
    Chemphyschem; 2008 Sep; 9(13):1899-907. PubMed ID: 18704901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designed Patterning of Mesoporous Metal Films Based on Electrochemical Micelle Assembly Combined with Lithographical Techniques.
    Lim H; Kim J; Kani K; Masud MK; Park H; Kim M; Alsheri SM; Ahamad T; Alhokbany N; Na J; Malgras V; Bando Y; Yamauchi Y
    Small; 2020 Mar; 16(12):e1902934. PubMed ID: 31603273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Enhanced Raman Spectroscopy at Electrochemically Fabricated Silver Nanowire Junctions.
    Dasari R; Zamborini FP
    Anal Chem; 2016 Jan; 88(1):675-81. PubMed ID: 26588062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver nanoparticle-mesoporous oxide nanocomposite thin films: a platform for spatially homogeneous SERS-active substrates with enhanced stability.
    Wolosiuk A; Tognalli NG; Martínez ED; Granada M; Fuertes MC; Troiani H; Bilmes SA; Fainstein A; Soler-Illia GJ
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5263-72. PubMed ID: 24621107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.