These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24863794)

  • 41. Hybrid ZnO/ZnS nanoforests as the electrode materials for high performance supercapacitor application.
    Zhang S; Yin B; Jiang H; Qu F; Umar A; Wu X
    Dalton Trans; 2015 Feb; 44(5):2409-15. PubMed ID: 25554365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Facile in situ synthesis of hierarchical porous Ni/Ni(OH)₂ hybrid sponges with excellent electrochemical energy-storage performances for supercapacitors.
    Wang W; Wang W; Wang M; Guo X
    Chem Asian J; 2014 Sep; 9(9):2590-6. PubMed ID: 25048538
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced Specific Capacitance of Few-Layer MoS₂ Nanosheets via SDBS-Assisted Hydrothermal Method.
    Bai LZ; Li F; An D; Wei JF; Zhang ZY; Liu YQ
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1804-1810. PubMed ID: 29448663
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hierarchically structured Ni(3)S(2)/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors.
    Dai CS; Chien PY; Lin JY; Chou SW; Wu WK; Li PH; Wu KY; Lin TW
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12168-74. PubMed ID: 24191729
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sulphur Source-Inspired Self-Grown 3D Ni
    Shinde NM; Xia QX; Shinde PV; Yun JM; Mane RS; Kim KH
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4551-4559. PubMed ID: 30601660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis, and crystal and electronic structure of sodium metal phosphate for use as a hybrid capacitor in non-aqueous electrolyte.
    Sundaram MM; Watcharatharapong T; Chakraborty S; Ahuja R; Duraisamy S; Rao PT; Munichandraiah N
    Dalton Trans; 2015 Dec; 44(46):20108-20. PubMed ID: 26530639
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of Transition Metal Cations on Stability Enhancement for Molybdate-Based Hybrid Supercapacitor.
    Watcharatharapong T; Minakshi Sundaram M; Chakraborty S; Li D; Shafiullah GM; Aughterson RD; Ahuja R
    ACS Appl Mater Interfaces; 2017 May; 9(21):17977-17991. PubMed ID: 28481523
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Supercapacitor studies on NiO nanoflakes synthesized through a microwave route.
    Vijayakumar S; Nagamuthu S; Muralidharan G
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2188-96. PubMed ID: 23459412
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties.
    Li Z; Bao H; Miao X; Chen X
    J Colloid Interface Sci; 2011 May; 357(2):286-91. PubMed ID: 21377162
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Low cost facile synthesis of large-area cobalt hydroxide nanorods with remarkable pseudocapacitance.
    Deng MJ; Song CZ; Wang CC; Tseng YC; Chen JM; Lu KT
    ACS Appl Mater Interfaces; 2015 May; 7(17):9147-56. PubMed ID: 25874993
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional Co₃O₄@NiMoO₄ core/shell nanowire arrays on Ni foam for electrochemical energy storage.
    Cai D; Wang D; Liu B; Wang L; Liu Y; Li H; Wang Y; Li Q; Wang T
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5050-5. PubMed ID: 24598433
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Great improvement in pseudocapacitor properties of nickel hydroxide via simple gold deposition.
    Kim SI; Thiyagarajan P; Jang JH
    Nanoscale; 2014 Oct; 6(20):11646-52. PubMed ID: 25154383
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors.
    Aravindan V; Chuiling W; Reddy MV; Rao GV; Chowdari BV; Madhavi S
    Phys Chem Chem Phys; 2012 Apr; 14(16):5808-14. PubMed ID: 22434062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hybridized Phosphate with Ultrathin Nanoslices and Single Crystal Microplatelets for High Performance Supercapacitors.
    Zhao Y; Chen Z; Xiong DB; Qiao Y; Tang Y; Gao F
    Sci Rep; 2016 Feb; 6():17613. PubMed ID: 26833204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New Method for the Synthesis of 2D Vanadium Nitride (MXene) and Its Application as a Supercapacitor Electrode.
    Venkateshalu S; Cherusseri J; Karnan M; Kumar KS; Kollu P; Sathish M; Thomas J; Jeong SK; Grace AN
    ACS Omega; 2020 Jul; 5(29):17983-17992. PubMed ID: 32743171
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering of Nanostructured WO
    Mineo G; Scuderi M; Pezzotti Escobar G; Mirabella S; Bruno E
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500791
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication and performance studies of a cable-type flexible asymmetric supercapacitor.
    Senthilkumar ST; Kalai Selvan R
    Phys Chem Chem Phys; 2014 Aug; 16(29):15692-8. PubMed ID: 24960123
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors.
    Yang Y; Li L; Ruan G; Fei H; Xiang C; Fan X; Tour JM
    ACS Nano; 2014 Sep; 8(9):9622-8. PubMed ID: 25198148
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rational design of Ni nanoparticles on N-rich ultrathin carbon nanosheets for high-performance supercapacitor materials: embedded- versus anchored-type dispersion.
    Yang M; Zhong Y; Su L; Wei J; Zhou Z
    Chemistry; 2014 Apr; 20(17):5046-53. PubMed ID: 24644032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions.
    Dong R; Ye Q; Kuang L; Lu X; Zhang Y; Zhang X; Tan G; Wen Y; Wang F
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9508-16. PubMed ID: 24001053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.