These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24863891)

  • 1. Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria.
    Kolvenbach BA; Helbling DE; Kohler HP; Corvini PF
    Curr Opin Biotechnol; 2014 Jun; 27():8-14. PubMed ID: 24863891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twenty one important things you should know.
    Michán C; Ramos JL; Daniels C
    Microb Biotechnol; 2009 Jul; 2(4):397-400. PubMed ID: 21255270
    [No Abstract]   [Full Text] [Related]  

  • 3. Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities.
    Janssen DB; Dinkla IJ; Poelarends GJ; Terpstra P
    Environ Microbiol; 2005 Dec; 7(12):1868-82. PubMed ID: 16309386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of bulk chemicals via novel metabolic pathways in microorganisms.
    Shin JH; Kim HU; Kim DI; Lee SY
    Biotechnol Adv; 2013 Nov; 31(6):925-35. PubMed ID: 23280013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paracetamol in the environment and its degradation by microorganisms.
    Wu S; Zhang L; Chen J
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):875-84. PubMed ID: 23053075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of Substrate Biodegradation under the Cumulative Effects of Bioavailability and Self-Inhibition.
    Gharasoo M; Centler F; Van Cappellen P; Wick LY; Thullner M
    Environ Sci Technol; 2015 May; 49(9):5529-37. PubMed ID: 25839352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives.
    Rucká L; Nešvera J; Pátek M
    World J Microbiol Biotechnol; 2017 Sep; 33(9):174. PubMed ID: 28879631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory evolution of catabolic enzymes and pathways.
    Parales RE; Ditty JL
    Curr Opin Biotechnol; 2005 Jun; 16(3):315-25. PubMed ID: 15961033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the evolution of enzyme substrate promiscuity after the discovery of (βα)₈ isomerase evolutionary intermediates from a diverse metagenome.
    Noda-García L; Juárez-Vázquez AL; Ávila-Arcos MC; Verduzco-Castro EA; Montero-Morán G; Gaytán P; Carrillo-Tripp M; Barona-Gómez F
    BMC Evol Biol; 2015 Jun; 15():107. PubMed ID: 26058375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evolution of catabolic pathways of bacteria.
    Ramos JL; Timmis KN
    Microbiol Sci; 1987 Aug; 4(8):228-37. PubMed ID: 3153615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systemic approaches to biodegradation.
    Trigo A; Valencia A; Cases I
    FEMS Microbiol Rev; 2009 Jan; 33(1):98-108. PubMed ID: 19054119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants.
    Chakraborty J; Das S
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):16883-903. PubMed ID: 27234838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic model for predicting biodegradation.
    Dimitrov S; Pavlov T; Nedelcheva D; Reuschenbach P; Silvani M; Bias R; Comber M; Low L; Lee C; Parkerton T; Mekenyan O
    SAR QSAR Environ Res; 2007; 18(5-6):443-57. PubMed ID: 17654334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of chemicals in a standardized test and in environmental conditions.
    Ahtiainen J; Aalto M; Pessala P
    Chemosphere; 2003 May; 51(6):529-37. PubMed ID: 12615106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metagenomics for the discovery of pollutant degrading enzymes.
    Ufarté L; Laville É; Duquesne S; Potocki-Veronese G
    Biotechnol Adv; 2015 Dec; 33(8):1845-54. PubMed ID: 26526541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation.
    Guerra AB; Oliveira JS; Silva-Portela RCB; Araújo W; Carlos AC; Vasconcelos ATR; Freitas AT; Domingos YS; de Farias MF; Fernandes GJT; Agnez-Lima LF
    Environ Pollut; 2018 Apr; 235():869-880. PubMed ID: 29353803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation.
    Stroud JL; Paton GI; Semple KT
    J Appl Microbiol; 2007 May; 102(5):1239-53. PubMed ID: 17448159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refinement of biodegradation tests methodologies and the proposed utility of new microbial ecology techniques.
    Kowalczyk A; Martin TJ; Price OR; Snape JR; van Egmond RA; Finnegan CJ; Schäfer H; Davenport RJ; Bending GD
    Ecotoxicol Environ Saf; 2015 Jan; 111():9-22. PubMed ID: 25450910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of enzymes used for bioindustry and bioremediation.
    Tanokura M; Miyakawa T; Guan L; Hou F
    Biosci Biotechnol Biochem; 2015; 79(9):1391-401. PubMed ID: 26072979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial pathways for degradation of nitroaromatics.
    Symons ZC; Bruce NC
    Nat Prod Rep; 2006 Dec; 23(6):845-50. PubMed ID: 17119634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.