These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24863902)

  • 1. Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases.
    Beckham GT; Ståhlberg J; Knott BC; Himmel ME; Crowley MF; Sandgren M; Sørlie M; Payne CM
    Curr Opin Biotechnol; 2014 Jun; 27():96-106. PubMed ID: 24863902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring processivity.
    Horn SJ; Sørlie M; Vårum KM; Väljamäe P; Eijsink VG
    Methods Enzymol; 2012; 510():69-95. PubMed ID: 22608722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A steady-state theory for processive cellulases.
    Cruys-Bagger N; Elmerdahl J; Praestgaard E; Borch K; Westh P
    FEBS J; 2013 Aug; 280(16):3952-61. PubMed ID: 23786663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic relationships with processivity in Serratia marcescens family 18 glycoside hydrolases.
    Hamre AG; Sørlie M
    Biochem Biophys Res Commun; 2020 Jan; 521(1):120-124. PubMed ID: 31629467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme processivity changes with the extent of recalcitrant polysaccharide degradation.
    Hamre AG; Lorentzen SB; Väljamäe P; Sørlie M
    FEBS Lett; 2014 Dec; 588(24):4620-4. PubMed ID: 25447535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases.
    Taylor CB; Payne CM; Himmel ME; Crowley MF; McCabe C; Beckham GT
    J Phys Chem B; 2013 May; 117(17):4924-33. PubMed ID: 23534900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of recalcitrant crystalline polysaccharides with lytic polysaccharide monooxygenase relieves the need for glycoside hydrolase processivity.
    Hamre AG; Strømnes AS; Gustavsen D; Vaaje-Kolstad G; Eijsink VGH; Sørlie M
    Carbohydr Res; 2019 Feb; 473():66-71. PubMed ID: 30640029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose.
    Nakamura A; Watanabe H; Ishida T; Uchihashi T; Wada M; Ando T; Igarashi K; Samejima M
    J Am Chem Soc; 2014 Mar; 136(12):4584-92. PubMed ID: 24571226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics I: depolymerization by EGI and CBHI.
    Griggs AJ; Stickel JJ; Lischeske JJ
    Biotechnol Bioeng; 2012 Mar; 109(3):665-75. PubMed ID: 22034153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate-protein interactions that drive processive polysaccharide translocation in enzymes revealed from a computational study of cellobiohydrolase processivity.
    Knott BC; Crowley MF; Himmel ME; Ståhlberg J; Beckham GT
    J Am Chem Soc; 2014 Jun; 136(24):8810-9. PubMed ID: 24869982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies.
    Knott BC; Haddad Momeni M; Crowley MF; Mackenzie LF; Götz AW; Sandgren M; Withers SG; Ståhlberg J; Beckham GT
    J Am Chem Soc; 2014 Jan; 136(1):321-9. PubMed ID: 24341799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characteristics of xyloglucanase and five other cellulolytic enzymes from Trichoderma reesei QM9414.
    Qi H; Bai F; Liu A
    Biochemistry (Mosc); 2013 Apr; 78(4):424-30. PubMed ID: 23590446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards new enzymes for biofuels: lessons from chitinase research.
    Eijsink VG; Vaaje-Kolstad G; Vårum KM; Horn SJ
    Trends Biotechnol; 2008 May; 26(5):228-35. PubMed ID: 18367275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases.
    Vermaas JV; Crowley MF; Beckham GT; Payne CM
    J Phys Chem B; 2015 May; 119(20):6129-43. PubMed ID: 25785779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Product binding varies dramatically between processive and nonprocessive cellulase enzymes.
    Bu L; Nimlos MR; Shirts MR; Ståhlberg J; Himmel ME; Crowley MF; Beckham GT
    J Biol Chem; 2012 Jul; 287(29):24807-13. PubMed ID: 22648408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare.
    Momeni MH; Payne CM; Hansson H; Mikkelsen NE; Svedberg J; Engström Å; Sandgren M; Beckham GT; Ståhlberg J
    J Biol Chem; 2013 Feb; 288(8):5861-72. PubMed ID: 23303184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interplay between lytic polysaccharide monooxygenases and glycoside hydrolases.
    Sørlie M; Keller MB; Westh P
    Essays Biochem; 2023 Apr; 67(3):551-559. PubMed ID: 36876880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis.
    Hiras J; Wu YW; Deng K; Nicora CD; Aldrich JT; Frey D; Kolinko S; Robinson EW; Jacobs JM; Adams PD; Northen TR; Simmons BA; Singer SW
    mBio; 2016 Aug; 7(4):. PubMed ID: 27555310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aromatic-Mediated Carbohydrate Recognition in Processive Serratia marcescens Chitinases.
    Jana S; Hamre AG; Wildberger P; Holen MM; Eijsink VG; Beckham GT; Sørlie M; Payne CM
    J Phys Chem B; 2016 Feb; 120(7):1236-49. PubMed ID: 26824449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycoside hydrolase processivity is directly related to oligosaccharide binding free energy.
    Payne CM; Jiang W; Shirts MR; Himmel ME; Crowley MF; Beckham GT
    J Am Chem Soc; 2013 Dec; 135(50):18831-9. PubMed ID: 24279927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.