BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 24864301)

  • 21. Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis.
    Zhang X; Chen Y; Wang ZY; Chen Z; Gu H; Qu LJ
    Plant J; 2007 Aug; 51(3):512-25. PubMed ID: 17587236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ELF4 is required for oscillatory properties of the circadian clock.
    McWatters HG; Kolmos E; Hall A; Doyle MR; Amasino RM; Gyula P; Nagy F; Millar AJ; Davis SJ
    Plant Physiol; 2007 May; 144(1):391-401. PubMed ID: 17384164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots.
    James AB; Monreal JA; Nimmo GA; Kelly CL; Herzyk P; Jenkins GI; Nimmo HG
    Science; 2008 Dec; 322(5909):1832-5. PubMed ID: 19095940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function.
    Nakamichi N; Kita M; Ito S; Sato E; Yamashino T; Mizuno T
    Plant Cell Physiol; 2005 Apr; 46(4):609-19. PubMed ID: 15695441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PRR7 protein levels are regulated by light and the circadian clock in Arabidopsis.
    Farré EM; Kay SA
    Plant J; 2007 Nov; 52(3):548-60. PubMed ID: 17877705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock.
    Onai K; Ishiura M
    Genes Cells; 2005 Oct; 10(10):963-72. PubMed ID: 16164597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arabidopsis thaliana circadian clock is regulated by the small GTPase LIP1.
    Kevei E; Gyula P; Fehér B; Tóth R; Viczián A; Kircher S; Rea D; Dorjgotov D; Schäfer E; Millar AJ; Kozma-Bognár L; Nagy F
    Curr Biol; 2007 Sep; 17(17):1456-64. PubMed ID: 17683937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ins and outs of circadian regulated gene expression.
    Strayer CA; Kay SA
    Curr Opin Plant Biol; 1999 Apr; 2(2):114-20. PubMed ID: 10322204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simplified modelling framework facilitates more complex representations of plant circadian clocks.
    Foo M; Bates DG; Akman OE
    PLoS Comput Biol; 2020 Mar; 16(3):e1007671. PubMed ID: 32176683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overview and Evaluation of Recent Methods for Statistical Inference of Gene Regulatory Networks from Time Series Data.
    Grzegorczyk M; Aderhold A; Husmeier D
    Methods Mol Biol; 2019; 1883():49-94. PubMed ID: 30547396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully Bayesian spline autoregression.
    Morrissey ER; Juárez MA; Denby KJ; Burroughs NJ
    Biostatistics; 2011 Oct; 12(4):682-94. PubMed ID: 21551122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing gene regulatory network inference through data integration with markov random fields.
    Banf M; Rhee SY
    Sci Rep; 2017 Feb; 7():41174. PubMed ID: 28145456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler.
    Grzegorczyk M; Husmeier D; Edwards KD; Ghazal P; Millar AJ
    Bioinformatics; 2008 Sep; 24(18):2071-8. PubMed ID: 18664467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pan- and core- gene association networks: Integrative approaches to understanding biological regulation.
    Wirojsirasak W; Kalapanulak S; Saithong T
    PLoS One; 2019; 14(1):e0210481. PubMed ID: 30625202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On reverse engineering of gene interaction networks using time course data with repeated measurements.
    Morrissey ER; Juárez MA; Denby KJ; Burroughs NJ
    Bioinformatics; 2010 Sep; 26(18):2305-12. PubMed ID: 20639410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inference of the genetic network regulating lateral root initiation in Arabidopsis thaliana.
    Muraro D; Voβ U; Wilson M; Bennett M; Byrne H; De Smet I; Hodgman C; King J
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):50-60. PubMed ID: 23702543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time series experimental design under one-shot sampling: The importance of condition diversity.
    Kang X; Hajek B; Wu F; Hanzawa Y
    PLoS One; 2019; 14(10):e0224577. PubMed ID: 31671126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From gene expression to gene regulatory networks in Arabidopsis thaliana.
    Needham CJ; Manfield IW; Bulpitt AJ; Gilmartin PM; Westhead DR
    BMC Syst Biol; 2009 Sep; 3():85. PubMed ID: 19728870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Consistent robustness analysis (CRA) identifies biologically relevant properties of regulatory network models.
    Saithong T; Painter KJ; Millar AJ
    PLoS One; 2010 Dec; 5(12):e15589. PubMed ID: 21179566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model comparison study of the flowering time regulatory network in Arabidopsis.
    Wang CC; Chang PC; Ng KL; Chang CM; Sheu PC; Tsai JJ
    BMC Syst Biol; 2014 Feb; 8():15. PubMed ID: 24513114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.