These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24864490)

  • 1. [The role of local hyperthermia in oncology: applications of a magnetic field, laser radiation, and ultrasound].
    Ulashchik VS
    Vopr Kurortol Fizioter Lech Fiz Kult; 2014; (2):48-57. PubMed ID: 24864490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Principles of development of multifunctional equipment for low level laser and magnetolaser therapy].
    PlavskiÄ­ VIu; Riabtsev AB; Leusenko IA; Mostovnikov VA; Mostovnikova GR; Plavskaia LG; Tret'iakova AI; Mostovnikov AV
    Med Tekh; 2011; (2):17-25. PubMed ID: 21574478
    [No Abstract]   [Full Text] [Related]  

  • 3. [Methods for creating hyperthermia in tumors by using electromagnetic fields].
    Gusev AN; OsinskiÄ­ SP
    Eksp Onkol; 1988; 10(3):14-21. PubMed ID: 3044770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analysis of parameters of reproductive tract mucosal immunity in women with chlamydial infection before and after local magnetolaserotherapy].
    Gizinger OA; Dolgushin II; Letiaeva OI
    Vopr Kurortol Fizioter Lech Fiz Kult; 2010; (5):30-3. PubMed ID: 21332087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The role of magnetolaserotherapy in the correction of the adaptive potential of the brain in the children suffering absence seizures].
    Kravtsova EIu; Kravtsov IuI; Shevchenko KV
    Vopr Kurortol Fizioter Lech Fiz Kult; 2014; (2):25-8. PubMed ID: 24864485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles.
    Chen CL; Kuo LR; Lee SY; Hwu YK; Chou SW; Chen CC; Chang FH; Lin KH; Tsai DH; Chen YY
    Biomaterials; 2013 Jan; 34(4):1128-34. PubMed ID: 23137396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Development and application of ultrasound technology for hyperthermia].
    Zhai L; Sun FC; Jiang JW; Xiao XL; Qian XP; Wang YK; Yu RK; Xu YJ; Zhang HF
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Jul; 26(4):281-3, 280. PubMed ID: 16104286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperthermia as an anticancer modality--a historical perspective.
    Meyer JL
    Front Radiat Ther Oncol; 1984; 18():1-22. PubMed ID: 6368320
    [No Abstract]   [Full Text] [Related]  

  • 9. Magnetic fluid hyperthermia modeling based on phantom measurements and realistic breast model.
    Miaskowski A; Sawicki B
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1806-13. PubMed ID: 23358949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Technical aspects of microwave hyperthermia].
    Boucek J; Vrba J
    Sb Lek; 1983 Mar; 85(3):90-6. PubMed ID: 6857137
    [No Abstract]   [Full Text] [Related]  

  • 11. [New methods of physical therapy and instruments for their application (based on projects developed in Belarus)].
    Ulashchik VS
    Vopr Kurortol Fizioter Lech Fiz Kult; 2011; (1):28-32. PubMed ID: 21465779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia.
    Wu Z; Zhuo Z; Cai D; Wu J; Wang J; Tang J
    Technol Health Care; 2015; 23 Suppl 2():S203-9. PubMed ID: 26410485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of measurement and control technologies for hyperthermia treatments of tumors with AC magnetic field].
    Guo ZH; Tang LX; Tang JT; Xie B; Deng XH
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jan; 30(1):39-42. PubMed ID: 16646424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The therapeutic effect of PEI-Mn0.5Zn0.5Fe2O4 nanoparticles/pEgr1-HSV-TK/GCV associated with radiation and magnet-induced heating on hepatoma.
    Lin M; Huang J; Zhang J; Wang L; Xiao W; Yu H; Li Y; Li H; Yuan C; Hou X; Zhang H; Zhang D
    Nanoscale; 2013 Feb; 5(3):991-1000. PubMed ID: 23250046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles.
    Chen SW; Lai JJ; Chiang CL; Chen CL
    Rev Sci Instrum; 2012 Jun; 83(6):064701. PubMed ID: 22755645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrotherapy: yesterday, today and tomorrow.
    Tiktinsky R; Chen L; Narayan P
    Haemophilia; 2010 Jul; 16 Suppl 5():126-31. PubMed ID: 20590871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.
    Lin M; Huang J; Sha M
    J Nanosci Nanotechnol; 2014 Jan; 14(1):792-802. PubMed ID: 24730298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo applications of magnetic nanoparticle hyperthermia.
    Hilger I
    Int J Hyperthermia; 2013 Dec; 29(8):828-34. PubMed ID: 24219800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperthermia--the actual role in radiation oncology and future prospects. Part I.
    Molls M
    Strahlenther Onkol; 1992 Apr; 168(4):183-90. PubMed ID: 1574767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracorporeal, low-energy focused ultrasound for noninvasive and nondestructive targeted hyperthermia.
    Wang S; Zderic V; Frenkel V
    Future Oncol; 2010 Sep; 6(9):1497-511. PubMed ID: 20919832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.