These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24865176)

  • 1. Large-area surface-enhanced Raman spectroscopy imaging of brain ischemia by gold nanoparticles grown on random nanoarrays of transparent boehmite.
    Yamazoe S; Naya M; Shiota M; Morikawa T; Kubo A; Tani T; Hishiki T; Horiuchi T; Suematsu M; Kajimura M
    ACS Nano; 2014 Jun; 8(6):5622-32. PubMed ID: 24865176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles.
    Su S; Zhang C; Yuwen L; Chao J; Zuo X; Liu X; Song C; Fan C; Wang L
    ACS Appl Mater Interfaces; 2014; 6(21):18735-41. PubMed ID: 25310705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An approach for fabricating self-assembled monolayer of gold nanoparticles on NH2(+) ion implantation modified indium tin oxide as the SERS-active substrate.
    Li S; Liu L; Hu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():533-7. PubMed ID: 22137745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au Nanoparticles Deposited on Magnetic Carbon Nanofibers as the Ultrahigh Sensitive Substrate for Surface-Enhanced Raman Scattering: Detections of Rhodamine 6G and Aromatic Amino Acids.
    Wu HC; Chen TC; Tsai HJ; Chen CS
    Langmuir; 2018 Nov; 34(47):14158-14168. PubMed ID: 30380878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability.
    Fan M; Brolo AG
    Chemphyschem; 2008 Sep; 9(13):1899-907. PubMed ID: 18704901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing and fabricating of surface-enhanced Raman scattering substrate with high density hot spots by polyaniline template-assisted self-assembly.
    Qian K; Liu H; Yang L; Liu J
    Nanoscale; 2012 Oct; 4(20):6449-54. PubMed ID: 22955203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study on polarized surface enhanced resonance Raman scattering of rhodamine 6G adsorbed on porous Al2O3 substrates.
    Jernshøj KD; Hassing S; Hansen RS; Krohne-Nielsen P
    J Chem Phys; 2011 Sep; 135(12):124514. PubMed ID: 21974542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous NIR SERS activity.
    Chang H; Kang H; Yang JK; Jo A; Lee HY; Lee YS; Jeong DH
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11859-63. PubMed ID: 25078544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new strategy to prepare surface-enhanced Raman scattering-active substrates by electrochemical pulse deposition of gold nanoparticles.
    Mai FD; Hsu TC; Liu YC; Yang KH; Chen BC
    Chem Commun (Camb); 2011 Mar; 47(10):2958-60. PubMed ID: 21243131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of ultralarge surface enhanced Raman spectroscopy (SERS)-active hot-spot volumes by an array of 2D nano-superlenses.
    Wei K; Shen Z; Malini O
    Anal Chem; 2012 Jan; 84(2):908-16. PubMed ID: 22107062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large area flexible SERS active substrates using engineered nanostructures.
    Chung AJ; Huh YS; Erickson D
    Nanoscale; 2011 Jul; 3(7):2903-8. PubMed ID: 21629884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates.
    Zhong LB; Yin J; Zheng YM; Liu Q; Cheng XX; Luo FH
    Anal Chem; 2014 Jul; 86(13):6262-7. PubMed ID: 24873535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable preparation of ultrathin silica-coated Ag nanoparticles for SERS application.
    Hu Y; Shi Y; Jiang H; Huang G; Li C
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10643-9. PubMed ID: 24117322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring.
    Zhang L; Jiang C; Zhang Z
    Nanoscale; 2013 May; 5(9):3773-9. PubMed ID: 23535912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for efficient surface-enhanced Raman scattering.
    Zhang K; Yao S; Li G; Hu Y
    Nanoscale; 2015 Feb; 7(6):2659-66. PubMed ID: 25580806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold-nanofève surface-enhanced Raman spectroscopy visualizes hypotaurine as a robust anti-oxidant consumed in cancer survival.
    Shiota M; Naya M; Yamamoto T; Hishiki T; Tani T; Takahashi H; Kubo A; Koike D; Itoh M; Ohmura M; Kabe Y; Sugiura Y; Hiraoka N; Morikawa T; Takubo K; Suina K; Nagashima H; Sampetrean O; Nagano O; Saya H; Yamazoe S; Watanabe H; Suematsu M
    Nat Commun; 2018 Apr; 9(1):1561. PubMed ID: 29674746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes.
    Zhang K; Ji J; Li Y; Liu B
    Anal Chem; 2014 Jul; 86(13):6660-5. PubMed ID: 24915488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoisland arrays by repeated deposition and post-deposition annealing for surface-enhanced Raman spectroscopy.
    Sun X; Li H
    Nanotechnology; 2013 Sep; 24(35):355706. PubMed ID: 23942082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.