These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 24865244)

  • 81. Combinatorial microRNAs: working together to make a difference.
    Ivanovska I; Cleary MA
    Cell Cycle; 2008 Oct; 7(20):3137-42. PubMed ID: 18927506
    [TBL] [Abstract][Full Text] [Related]  

  • 82. microRNAs: key triggers of neuronal cell fate.
    Meza-Sosa KF; Pedraza-Alva G; Pérez-Martínez L
    Front Cell Neurosci; 2014; 8():175. PubMed ID: 25009466
    [TBL] [Abstract][Full Text] [Related]  

  • 83. LncRNA Riken-201 and Riken-203 modulates neural development by regulating the Sox6 through sequestering miRNAs.
    Zhang L; Xue Z; Yan J; Wang J; Liu Q; Jiang H
    Cell Prolif; 2019 May; 52(3):e12573. PubMed ID: 30667104
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Regulatory triangle of neurodegeneration, adult neurogenesis and microRNAs.
    Singh T; Jauhari A; Pandey A; Singh P; Pant AB; Parmar D; Yadav S
    CNS Neurol Disord Drug Targets; 2014 Feb; 13(1):96-103. PubMed ID: 24152328
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A Novel Five-Node Feed-Forward Loop Unravels miRNA-Gene-TF Regulatory Relationships in Ischemic Stroke.
    Nampoothiri SS; Fayaz SM; Rajanikant GK
    Mol Neurobiol; 2018 Nov; 55(11):8251-8262. PubMed ID: 29524052
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Polycomb controls gliogenesis by regulating the transient expression of the Gcm/Glide fate determinant.
    Popkova A; Bernardoni R; Diebold C; Van de Bor V; Schuettengruber B; González I; Busturia A; Cavalli G; Giangrande A
    PLoS Genet; 2012; 8(12):e1003159. PubMed ID: 23300465
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Integration of miRNA and protein profiling reveals coordinated neuroadaptations in the alcohol-dependent mouse brain.
    Gorini G; Nunez YO; Mayfield RD
    PLoS One; 2013; 8(12):e82565. PubMed ID: 24358208
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis.
    Nielsen JA; Lau P; Maric D; Barker JL; Hudson LD
    BMC Neurosci; 2009 Aug; 10():98. PubMed ID: 19689821
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach.
    Pio G; Malerba D; D'Elia D; Ceci M
    BMC Bioinformatics; 2014; 15 Suppl 1(Suppl 1):S4. PubMed ID: 24564296
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell.
    Sotiropoulou G; Pampalakis G; Lianidou E; Mourelatos Z
    RNA; 2009 Aug; 15(8):1443-61. PubMed ID: 19561119
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Integrative identification of deregulated miRNA/TF-mediated gene regulatory loops and networks in prostate cancer.
    Afshar AS; Xu J; Goutsias J
    PLoS One; 2014; 9(6):e100806. PubMed ID: 24968068
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Investigating the functional implications of reinforcing feedback loops in transcriptional regulatory networks.
    Li Y; Liang C; Easterbrook S; Luo J; Zhang Z
    Mol Biosyst; 2014 Dec; 10(12):3238-48. PubMed ID: 25286350
    [TBL] [Abstract][Full Text] [Related]  

  • 93. MicroRNAs in melanocyte and melanoma biology.
    Mione M; Bosserhoff A
    Pigment Cell Melanoma Res; 2015 May; 28(3):340-54. PubMed ID: 25515738
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Feedback networks between microRNAs and epigenetic modifications in urological tumors.
    Liep J; Rabien A; Jung K
    Epigenetics; 2012 Apr; 7(4):315-25. PubMed ID: 22414795
    [TBL] [Abstract][Full Text] [Related]  

  • 95. MicroRNAs and synaptic plasticity--a mutual relationship.
    Aksoy-Aksel A; Zampa F; Schratt G
    Philos Trans R Soc Lond B Biol Sci; 2014 Sep; 369(1652):. PubMed ID: 25135976
    [TBL] [Abstract][Full Text] [Related]  

  • 96. [MicroRNAs in neurobiology].
    Kawahara Y
    Brain Nerve; 2008 Dec; 60(12):1437-44. PubMed ID: 19110755
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts.
    Victor MB; Richner M; Hermanstyne TO; Ransdell JL; Sobieski C; Deng PY; Klyachko VA; Nerbonne JM; Yoo AS
    Neuron; 2014 Oct; 84(2):311-23. PubMed ID: 25374357
    [TBL] [Abstract][Full Text] [Related]  

  • 98. MicroRNAs Induce a Permissive Chromatin Environment that Enables Neuronal Subtype-Specific Reprogramming of Adult Human Fibroblasts.
    Abernathy DG; Kim WK; McCoy MJ; Lake AM; Ouwenga R; Lee SW; Xing X; Li D; Lee HJ; Heuckeroth RO; Dougherty JD; Wang T; Yoo AS
    Cell Stem Cell; 2017 Sep; 21(3):332-348.e9. PubMed ID: 28886366
    [TBL] [Abstract][Full Text] [Related]  

  • 99. MicroRNA-based conversion of human fibroblasts into striatal medium spiny neurons.
    Richner M; Victor MB; Liu Y; Abernathy D; Yoo AS
    Nat Protoc; 2015 Oct; 10(10):1543-55. PubMed ID: 26379228
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts.
    Huh CJ; Zhang B; Victor MB; Dahiya S; Batista LF; Horvath S; Yoo AS
    Elife; 2016 Sep; 5():. PubMed ID: 27644593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.