These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24865253)

  • 21. Study on structure, mechanical property and cell cytocompatibility of electrospun collagen nanofibers crosslinked by common agents.
    Luo X; Guo Z; He P; Chen T; Li L; Ding S; Li H
    Int J Biol Macromol; 2018 Jul; 113():476-486. PubMed ID: 29391224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin.
    Koh HS; Yong T; Chan CK; Ramakrishna S
    Biomaterials; 2008 Sep; 29(26):3574-82. PubMed ID: 18533251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and characterization of a composite of demineralized bone matrix fragments and polylactide beads for bone tissue engineering.
    Thomas CB; Maxson S; Burg KJ
    J Biomater Sci Polym Ed; 2011; 22(4-6):589-610. PubMed ID: 20566047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Demineralization removes residual alendronate in allograft bone procured from donors with a history of bisphosphonate use.
    Hunter SA; Orheim R; Sazon M; Newman H; Woll JE; Bergevin M
    J Periodontol; 2011 Feb; 82(2):281-6. PubMed ID: 20731588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust fabrication of electrospun-like polymer mats to direct cell behaviour.
    Ballester-Beltrán J; Lebourg M; Capella H; Diaz Lantada A; Salmerón-Sánchez M
    Biofabrication; 2014 Sep; 6(3):035009. PubMed ID: 24867823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrospinning of Bioinspired Polymer Scaffolds.
    Araujo JV; Carvalho PP; Best SM
    Adv Exp Med Biol; 2015; 881():33-53. PubMed ID: 26545743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix.
    Zhang M; Powers RM; Wolfinbarger L
    J Periodontol; 1997 Nov; 68(11):1085-92. PubMed ID: 9407401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications.
    Ramier J; Bouderlique T; Stoilova O; Manolova N; Rashkov I; Langlois V; Renard E; Albanese P; Grande D
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():161-9. PubMed ID: 24656364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. γ-Fe2O3 nanoparticles filled polyvinyl alcohol as potential biomaterial for tissue engineering scaffold.
    Ngadiman NH; Idris A; Irfan M; Kurniawan D; Yusof NM; Nasiri R
    J Mech Behav Biomed Mater; 2015 Sep; 49():90-104. PubMed ID: 26002419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of porous PLA/DBM composite biomaterials and experimental research of repair rabbit radius segmental bone defect.
    Zhang Y; Wang J; Wang J; Niu X; Liu J; Gao L; Zhai X; Chu K
    Cell Tissue Bank; 2015 Dec; 16(4):615-22. PubMed ID: 25904497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrospinning of polymeric nanofibers for tissue engineering applications: a review.
    Pham QP; Sharma U; Mikos AG
    Tissue Eng; 2006 May; 12(5):1197-211. PubMed ID: 16771634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study.
    Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y
    Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration.
    Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH
    Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds.
    Jeong SI; Lee AY; Lee YM; Shin H
    J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses.
    Kim HW; Yu HS; Lee HH
    J Biomed Mater Res A; 2008 Oct; 87(1):25-32. PubMed ID: 18080298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering.
    Wright LD; Young RT; Andric T; Freeman JW
    Biomed Mater; 2010 Oct; 5(5):055006. PubMed ID: 20844321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D
    Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering.
    Hoveizi E; Nabiuni M; Parivar K; Rajabi-Zeleti S; Tavakol S
    Cell Biol Int; 2014 Jan; 38(1):41-9. PubMed ID: 24030862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein- and peptide-based electrospun nanofibers in medical biomaterials.
    Khadka DB; Haynie DT
    Nanomedicine; 2012 Nov; 8(8):1242-62. PubMed ID: 22406190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.