These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24865253)

  • 41. The in vitro elution of BMP-7 from demineralized bone matrix.
    Pietrzak WS; Dow M; Gomez J; Soulvie M; Tsiagalis G
    Cell Tissue Bank; 2012 Dec; 13(4):653-61. PubMed ID: 22200971
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds.
    Jiang Q; Reddy N; Yang Y
    Acta Biomater; 2010 Oct; 6(10):4042-51. PubMed ID: 20438870
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of gamma-irradiation, storage and hydration on osteoinductivity of DBM and DBM/AM composite.
    Qiu QQ; Connor J
    J Biomed Mater Res A; 2008 Nov; 87(2):373-9. PubMed ID: 18181114
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tissue engineered plant extracts as nanofibrous wound dressing.
    Jin G; Prabhakaran MP; Kai D; Annamalai SK; Arunachalam KD; Ramakrishna S
    Biomaterials; 2013 Jan; 34(3):724-34. PubMed ID: 23111334
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility.
    Chen L; Zhu C; Fan D; Liu B; Ma X; Duan Z; Zhou Y
    J Biomed Mater Res A; 2011 Dec; 99(3):395-409. PubMed ID: 22021187
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanostructured polymeric scaffolds for orthopaedic regenerative engineering.
    Deng M; James R; Laurencin CT; Kumbar SG
    IEEE Trans Nanobioscience; 2012 Mar; 11(1):3-14. PubMed ID: 22275722
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantification of various growth factors in different demineralized bone matrix preparations.
    Wildemann B; Kadow-Romacker A; Haas NP; Schmidmaier G
    J Biomed Mater Res A; 2007 May; 81(2):437-42. PubMed ID: 17117475
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Periodontal ligament cellular structures engineered with electrospun poly(DL-lactide-co-glycolide) nanofibrous membrane scaffolds.
    Inanç B; Arslan YE; Seker S; Elçin AE; Elçin YM
    J Biomed Mater Res A; 2009 Jul; 90(1):186-95. PubMed ID: 18491392
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Remineralization of demineralized bone matrix (DBM) via alternating solution immersion (ASI).
    Soicher MA; Christiansen BA; Stover SM; Leach JK; Fyhrie DP
    J Mech Behav Biomed Mater; 2013 Oct; 26():109-18. PubMed ID: 23759125
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synergetic stimulation of nanostructure and chemistry cues on behaviors of fibroblasts and endothelial cells.
    Wu Z; Xu Y; Li H
    Colloids Surf B Biointerfaces; 2017 Dec; 160():500-509. PubMed ID: 29017145
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel method to precisely assemble loose nanofiber structures for regenerative medicine applications.
    Beachley V; Katsanevakis E; Zhang N; Wen X
    Adv Healthc Mater; 2013 Feb; 2(2):343-51. PubMed ID: 23184622
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In situ UV-crosslinking gelatin electrospun fibers for tissue engineering applications.
    Lin WH; Tsai WB
    Biofabrication; 2013 Sep; 5(3):035008. PubMed ID: 23839910
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering.
    Liao S; Murugan R; Chan CK; Ramakrishna S
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):252-60. PubMed ID: 19627790
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cross-Linking Agents for Electrospinning-Based Bone Tissue Engineering.
    Lim DJ
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628254
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Peptide grafting strategies before and after electrospinning of nanofibers.
    Bucci R; Vaghi F; Erba E; Romanelli A; Gelmi ML; Clerici F
    Acta Biomater; 2021 Mar; 122():82-100. PubMed ID: 33326882
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Production of an osteoinductive demineralised bone matrix powder without the use of organic solvents.
    Eagle MJ; Rooney P; Kearney JN
    Cell Tissue Bank; 2015 Sep; 16(3):433-41. PubMed ID: 25492103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds.
    Liao H; Qi R; Shen M; Cao X; Guo R; Zhang Y; Shi X
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):528-35. PubMed ID: 21353768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.