BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24865504)

  • 1. Environmental effects of soil contamination by shale fuel oils.
    Kanarbik L; Blinova I; Sihtmäe M; Künnis-Beres K; Kahru A
    Environ Sci Pollut Res Int; 2014 Oct; 21(19):11320-30. PubMed ID: 24865504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of Water Accommodated Fractions of Estonian Shale Fuel Oils to Aquatic Organisms.
    Blinova I; Kanarbik L; Sihtmäe M; Kahru A
    Arch Environ Contam Toxicol; 2016 Feb; 70(2):383-91. PubMed ID: 26590906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioassays with terrestrial and aquatic species as monitoring tools of hydrocarbon degradation.
    Bori J; Vallès B; Ortega L; Riva MC
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18694-703. PubMed ID: 27312898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry.
    Kahru A; Maloverjan A; Sillak H; Põllumaa L
    Environ Sci Pollut Res Int; 2002; Spec No 1():27-33. PubMed ID: 12638745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the effects of Cr, Cu, Ni and Pb soil contamination by ecotoxicological tests.
    Maisto G; Manzo S; De Nicola F; Carotenuto R; Rocco A; Alfani A
    J Environ Monit; 2011 Nov; 13(11):3049-56. PubMed ID: 21918769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytotoxicity tests of solid wastes and contaminated soils in the Czech Republic.
    Kocí V; Mocová K; Kulovaná M; Vosáhlová S
    Environ Sci Pollut Res Int; 2010 Mar; 17(3):611-23. PubMed ID: 19557447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of surface water quality using an ecotoxicological approach: a case study of the Alqueva Reservoir (Portugal).
    Palma P; Alvarenga P; Palma V; Matos C; Fernandes RM; Soares A; Barbosa IR
    Environ Sci Pollut Res Int; 2010 Mar; 17(3):703-16. PubMed ID: 19396484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the effects of soil PAH accumulation by a battery of ecotoxicological tests.
    Manzo S; De Nicola F; De Luca Picione F; Maisto G; Alfani A
    Chemosphere; 2008 May; 71(10):1937-44. PubMed ID: 18336862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons.
    Lipińska A; Wyszkowska J; Kucharski J
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18519-30. PubMed ID: 26341339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study.
    Hubálek T; Vosáhlová S; Matejů V; Kovácová N; Novotný C
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):1-7. PubMed ID: 17106791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking pollution of roadside soils and ecotoxicological responses of five higher plants.
    Nikolaeva O; Karpukhin M; Streletskii R; Rozanova M; Chistova O; Panina N
    Ecotoxicol Environ Saf; 2021 Jan; 208():111586. PubMed ID: 33396109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weathering and toxicity of marine sediments contaminated with oils and polycyclic aromatic hydrocarbons.
    Jonker MT; Brils JM; Sinke AJ; Murk AJ; Koelmans AA
    Environ Toxicol Chem; 2006 May; 25(5):1345-53. PubMed ID: 16704068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial.
    Coulon F; Al Awadi M; Cowie W; Mardlin D; Pollard S; Cunningham C; Risdon G; Arthur P; Semple KT; Paton GI
    Environ Pollut; 2010 Oct; 158(10):3032-40. PubMed ID: 20656385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus.
    Heinlaan M; Ivask A; Blinova I; Dubourguier HC; Kahru A
    Chemosphere; 2008 Apr; 71(7):1308-16. PubMed ID: 18194809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the environmental hazard caused by the oil shale industry solid waste.
    Põllumaa L; Maloveryan A; Trapido M; Sillak H; Kahru A
    Altern Lab Anim; 2001; 29(3):259-67. PubMed ID: 11387023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid screening for soil ecotoxicity with a battery of luminescent bacteria tests.
    Heinlaan M; Kahru A; Kasemets K; Kurvet I; Waterlot C; Sepp K; Dubourguier HC; Douay F
    Altern Lab Anim; 2007 Mar; 35(1):101-10. PubMed ID: 17411358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem.
    Oropesa AL; Floro AM; Palma P
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16605-16616. PubMed ID: 28474259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecotoxicological risks of the abandoned F-Ba-Pb-Zn mining area of Osor (Spain).
    Bori J; Vallès B; Navarro A; Riva MC
    Environ Geochem Health; 2017 Jun; 39(3):665-679. PubMed ID: 27260479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental hazard of oil shale combustion fly ash.
    Blinova I; Bityukova L; Kasemets K; Ivask A; Käkinen A; Kurvet I; Bondarenko O; Kanarbik L; Sihtmäe M; Aruoja V; Schvede H; Kahru A
    J Hazard Mater; 2012 Aug; 229-230():192-200. PubMed ID: 22717068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays.
    Bastos AC; Prodana M; Abrantes N; Keizer JJ; Soares AM; Loureiro S
    Ecotoxicology; 2014 Nov; 23(9):1784-93. PubMed ID: 25213286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.