BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24865602)

  • 21. Interspecific competition counteracts negative effects of dispersal on adaptation of an arthropod herbivore to a new host.
    Alzate A; Bisschop K; Etienne RS; Bonte D
    J Evol Biol; 2017 Nov; 30(11):1966-1977. PubMed ID: 28556282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Juvenile Spider Mites Induce Salicylate Defenses, but Not Jasmonate Defenses, Unlike Adults.
    Liu J; Legarrea S; Alba JM; Dong L; Chafi R; Menken SBJ; Kant MR
    Front Plant Sci; 2020; 11():980. PubMed ID: 32754172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Herbivores with similar feeding modes interact through the induction of different plant responses.
    de Oliveira EF; Pallini A; Janssen A
    Oecologia; 2016 Jan; 180(1):1-10. PubMed ID: 26025574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk.
    Alba JM; Schimmel BC; Glas JJ; Ataide LM; Pappas ML; Villarroel CA; Schuurink RC; Sabelis MW; Kant MR
    New Phytol; 2015 Jan; 205(2):828-40. PubMed ID: 25297722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The distribution of herbivores between leaves matches their performance only in the absence of competitors.
    Godinho DP; Janssen A; Li D; Cruz C; Magalhães S
    Ecol Evol; 2020 Aug; 10(15):8405-8415. PubMed ID: 32788989
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Male spider mites use chemical cues, but not the female mating interval, to choose between mates.
    Rodrigues LR; Figueiredo AR; Varela SA; Olivieri I; Magalhães S
    Exp Appl Acarol; 2017 Jan; 71(1):1-13. PubMed ID: 28040863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolate-Specific Effect of Entomopathogenic Endophytic Fungi on Population Growth of Two-Spotted Spider Mite (Tetranychus urticae Koch) and Levels of Steroidal Glycoalkaloids in Tomato.
    Rasool S; Cárdenas PD; Pattison DI; Jensen B; Meyling NV
    J Chem Ecol; 2021 May; 47(4-5):476-488. PubMed ID: 33740175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asymmetry in the reproductive interference between two closely related species of spider mites, Panonychus citri and Panonychus osmanthi (Prostigmata: Tetranychidae).
    Oide Y; Osakabe M
    Exp Appl Acarol; 2023 Aug; 90(3-4):247-266. PubMed ID: 37470937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intradiol ring cleavage dioxygenases from herbivorous spider mites as a new detoxification enzyme family in animals.
    Njiru C; Xue W; De Rouck S; Alba JM; Kant MR; Chruszcz M; Vanholme B; Dermauw W; Wybouw N; Van Leeuwen T
    BMC Biol; 2022 Jun; 20(1):131. PubMed ID: 35658860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of two-spotted spider mite Tetranychus urticae for plant-pest interaction studies.
    Cazaux M; Navarro M; Bruinsma KA; Zhurov V; Negrave T; Van Leeuwen T; Grbic V; Grbic M
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25046103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concurrent herbivory and metal accumulation: The outcome for plants and herbivores.
    Godinho DP; Serrano HC; Magalhães S; Branquinho C
    Plant Environ Interact; 2022 Aug; 3(4):170-178. PubMed ID: 37283609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Male behavioural plasticity depends on maternal mating status in the two-spotted spider mite.
    Oku K; van den Beuken TPG
    Exp Appl Acarol; 2017 Apr; 71(4):319-327. PubMed ID: 28432470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mate choice promotes inbreeding avoidance in the two-spotted spider mite.
    Tien NS; Massourakis G; Sabelis MW; Egas M
    Exp Appl Acarol; 2011 Jun; 54(2):119-24. PubMed ID: 21400191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Males mate with females even after sperm depletion in the two-spotted spider mite.
    Kobayashi H; Sato Y; Egas M
    Exp Appl Acarol; 2022 Apr; 86(4):465-477. PubMed ID: 35451696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities.
    Glas JJ; Alba JM; Simoni S; Villarroel CA; Stoops M; Schimmel BC; Schuurink RC; Sabelis MW; Kant MR
    BMC Biol; 2014 Nov; 12():98. PubMed ID: 25403155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological control of Tetranychus urticae by Phytoseiulus macropilis and Macrolophus pygmaeus in tomato greenhouses.
    Gigon V; Camps C; Le Corff J
    Exp Appl Acarol; 2016 Jan; 68(1):55-70. PubMed ID: 26481345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drought stress in tomato increases the performance of adapted and non-adapted strains of Tetranychus urticae.
    Ximénez-Embún MG; Castañera P; Ortego F
    J Insect Physiol; 2017 Jan; 96():73-81. PubMed ID: 27789296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of Plant Defenses by Herbivorous Mites Is Not Associated with Adaptation to Host Plants.
    Paulo JT; Godinho DP; Silva A; Branquinho C; Magalhães S
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29914126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deleterious effects of UV-B radiation on herbivorous spider mites: they can avoid it by remaining on lower leaf surfaces.
    Ohtsuka K; Osakabe MM
    Environ Entomol; 2009 Jun; 38(3):920-9. PubMed ID: 19508803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predator avoidance in phytophagous mites: response to present danger depends on alternative host quality.
    Choh Y; Takabayashi J
    Oecologia; 2007 Mar; 151(2):262-7. PubMed ID: 17102994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.