BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

597 related articles for article (PubMed ID: 24865620)

  • 21. Vocal fold vibrations: high-speed imaging, kymography, and acoustic analysis: a preliminary report.
    Larsson H; Hertegård S; Lindestad PA; Hammarberg B
    Laryngoscope; 2000 Dec; 110(12):2117-22. PubMed ID: 11129033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal Quantification of Vocal Fold Vibration After Exposure to Superficial Laryngeal Dehydration: A Preliminary Study.
    Patel RR; Walker R; Sivasankar PM
    J Voice; 2016 Jul; 30(4):427-33. PubMed ID: 26277075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of longitudinal phase differences in vocal-fold vibration using synchronous high-speed videoendoscopy and electroglottography.
    Orlikoff RF; Golla ME; Deliyski DD
    J Voice; 2012 Nov; 26(6):816.e13-20. PubMed ID: 23059188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral analysis of digital kymography in normal adult vocal fold vibration.
    Chen W; Woo P; Murry T
    J Voice; 2014 May; 28(3):356-61. PubMed ID: 24412039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Imaging and Analysis of Human Vocal Fold Vibration Using Two-Dimensional (2D) Scanning Videokymography.
    Park HJ; Cha W; Kim GH; Jeon GR; Lee BJ; Shin BJ; Choi YG; Wang SG
    J Voice; 2016 May; 30(3):345-53. PubMed ID: 26239969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U
    Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphical evaluation of vocal fold vibratory patterns by high-speed videolaryngoscopy.
    Pinheiro AP; Dajer ME; Hachiya A; Montagnoli AN; Tsuji D
    J Voice; 2014 Jan; 28(1):106-11. PubMed ID: 24275457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The shouted voice: A pilot study of laryngeal physiology under extreme aerodynamic pressure.
    Lagier A; Legou T; Galant C; Amy de La Bretèque B; Meynadier Y; Giovanni A
    Logoped Phoniatr Vocol; 2017 Dec; 42(4):141-145. PubMed ID: 27484505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Objective measures of laryngeal imaging: what have we learned since Dr. Paul Moore.
    Woo P
    J Voice; 2014 Jan; 28(1):69-81. PubMed ID: 24094798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Examination of the Relationship Between Electroglottographic Contact Quotient, Electroglottographic Decontacting Phase Profile, and Acoustical Spectral Moments.
    Awan SN; Krauss AR; Herbst CT
    J Voice; 2015 Sep; 29(5):519-29. PubMed ID: 25795367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vibratory Dynamics of Four Types of Excised Larynx Phonations.
    Li L; Zhang Y; Calawerts W; Jiang JJ
    J Voice; 2016 Nov; 30(6):649-655. PubMed ID: 26476848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A case report in changes in phonatory physiology following voice therapy: application of high-speed imaging.
    Patel RR; Pickering J; Stemple J; Donohue KD
    J Voice; 2012 Nov; 26(6):734-41. PubMed ID: 22717492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Objective measurement of mucosal wave parameters in diagnosing benign lesions of the vocal folds.
    Krasnodębska P; Szkiełkowska A; Miaśkiewicz B; Włodarczyk E; Domeracka-Kołodziej A; Skarżyński H
    Logoped Phoniatr Vocol; 2019 Jul; 44(2):73-78. PubMed ID: 29318925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative analysis of vocal fold vibration using high-speed videoendoscopy and digital kymography.
    Baravieira PB; Brasolotto AG; Hachiya A; Takahashi-Ramos MT; Tsuji DH; Montagnoli AN
    J Voice; 2014 Sep; 28(5):603-7. PubMed ID: 24726330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The First Application of the Two-Dimensional Scanning Videokymography in Excised Canine Larynx Model.
    Wang SG; Park HJ; Cho JK; Jang JY; Lee WY; Lee BJ; Lee JC; Cha W
    J Voice; 2016 Jan; 30(1):1-4. PubMed ID: 26296852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Effects of Humming on the Prephonatory Vocal Fold Motions Under High-Speed Digital Imaging in Nondysphonic Speakers.
    Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H
    J Voice; 2017 May; 31(3):291-299. PubMed ID: 27726905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexible Fiber-Optic High-Speed Imaging of Vocal Fold Vibration: A Preliminary Report.
    Woo P; Baxter P
    J Voice; 2017 Mar; 31(2):175-181. PubMed ID: 28325351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of fundamental frequency at voice onset on vocal attack time.
    Watson BC; Baken RJ; Roark RM; Reid S; Ribeiro M; Tsai W
    J Voice; 2013 May; 27(3):273-7. PubMed ID: 23490128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electroglottographic and acoustic analysis of voice in children with vocal nodules.
    Szklanny K; Gubrynowicz R; Ratyńska J; Chojnacka-Wądołowska D
    Int J Pediatr Otorhinolaryngol; 2019 Jul; 122():82-88. PubMed ID: 30981945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.