BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

589 related articles for article (PubMed ID: 24865620)

  • 41. Vocal fold vibration and phonation start in aspirated, unaspirated, and staccato onset.
    McDonnell M; Sundberg J; Westerlund J; Lindestad PÅ; Larsson H
    J Voice; 2011 Sep; 25(5):526-31. PubMed ID: 20951547
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Semi-occluded vocal tract exercises: aerodynamic and electroglottographic measurements in singers.
    Dargin TC; Searl J
    J Voice; 2015 Mar; 29(2):155-64. PubMed ID: 25261954
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Usefulness of Two-Dimensional Digital Kymography in Patients With Vocal Fold Scarring.
    Kim GH; Lee YW; Bae IH; Park HJ; Wang SG; Kwon SB
    J Voice; 2019 Nov; 33(6):906-914. PubMed ID: 30055985
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ventricular-fold dynamics in human phonation.
    Bailly L; Bernardoni NH; Müller F; Rohlfs AK; Hess M
    J Speech Lang Hear Res; 2014 Aug; 57(4):1219-42. PubMed ID: 24687091
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relationship Between the Electroglottographic Signal and Vocal Fold Contact Area.
    Hampala V; Garcia M; Švec JG; Scherer RC; Herbst CT
    J Voice; 2016 Mar; 30(2):161-71. PubMed ID: 26256493
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A generalized procedure for analyzing sustained and dynamic vocal fold vibrations from laryngeal high-speed videos using phonovibrograms.
    Unger J; Schuster M; Hecker DJ; Schick B; Lohscheller J
    Artif Intell Med; 2016 Jan; 66():15-28. PubMed ID: 26597002
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vertical laryngeal position and oral pressure variations during resonance tube phonation in water and in air. A pilot study.
    Wistbacka G; Sundberg J; Simberg S
    Logoped Phoniatr Vocol; 2016 Oct; 41(3):117-23. PubMed ID: 26033381
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of Volume, Pitch, and Phonation Type on Oscillation Initiation and Termination Phases Investigated With High-speed Videoendoscopy.
    Kunduk M; Ikuma T; Blouin DC; McWhorter AJ
    J Voice; 2017 May; 31(3):313-322. PubMed ID: 27671752
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Observation and analysis of in vivo vocal fold tissue instabilities produced by nonlinear source-filter coupling: a case study.
    Zañartu M; Mehta DD; Ho JC; Wodicka GR; Hillman RE
    J Acoust Soc Am; 2011 Jan; 129(1):326-39. PubMed ID: 21303014
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vocal fold vibration measurements using laser Doppler vibrometry.
    Chan A; Mongeau L; Kost K
    J Acoust Soc Am; 2013 Mar; 133(3):1667-76. PubMed ID: 23464036
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Detailed Motion Analysis of the Angular Velocity Between the Vocal Folds During Throat Clearing Using High-speed Digital Imaging.
    Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H
    J Voice; 2016 Nov; 30(6):770.e1-770.e8. PubMed ID: 26778326
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optical reconstruction of high-speed surface dynamics in an uncontrollable environment.
    Luegmair G; Kniesburges S; Zimmermann M; Sutor A; Eysholdt U; Döllinger M
    IEEE Trans Med Imaging; 2010 Dec; 29(12):1979-91. PubMed ID: 21118756
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Flow and Pressure Relationships in Different Tubes Commonly Used for Semi-occluded Vocal Tract Exercises.
    Amarante Andrade P; Wistbacka G; Larsson H; Södersten M; Hammarberg B; Simberg S; Švec JG; Granqvist S
    J Voice; 2016 Jan; 30(1):36-41. PubMed ID: 25873546
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-speed Videolaryngoscopy: Quantitative Parameters of Glottal Area Waveforms and High-speed Kymography in Healthy Individuals.
    Tsutsumi M; Isotani S; Pimenta RA; Dajer ME; Hachiya A; Tsuji DH; Tayama N; Yokonishi H; Imagawa H; Yamauchi A; Takano S; Sakakibara KI; Montagnoli AN
    J Voice; 2017 May; 31(3):282-290. PubMed ID: 27793519
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-speed Imaging of Vocal Fold Vibration Onset Delay: Normal Versus Abnormal.
    Woo P
    J Voice; 2017 May; 31(3):307-312. PubMed ID: 27836428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings.
    Herbst CT; Lohscheller J; Švec JG; Henrich N; Weissengruber G; Fitch WT
    J Exp Biol; 2014 Mar; 217(Pt 6):955-63. PubMed ID: 24622896
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Visualization and Estimation of Vibratory Disturbance in Vocal Fold Scar Using High-Speed Digital Imaging.
    Yamauchi A; Yokonishi H; Imagawa H; Sakakibara K; Nito T; Tayama N; Yamasoba T
    J Voice; 2016 Jul; 30(4):493-500. PubMed ID: 26256494
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative analysis of high-speed videolaryngoscopy images and sound data simultaneously acquired from rigid and flexible laryngoscope: a pilot study.
    Pietruszewska W; Just M; Morawska J; Malinowski J; Hoffman J; Racino A; Barańska M; Kowalczyk M; Niebudek-Bogusz E
    Sci Rep; 2021 Oct; 11(1):20480. PubMed ID: 34650174
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Estimation of Source-Filter Interaction Regions Based on Electroglottography.
    Palaparthi A; Maxfield L; Titze IR
    J Voice; 2019 May; 33(3):269-276. PubMed ID: 29277351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.