These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24865837)

  • 1. Hair-inspired crystal growth of HOA in cavities of cellulose matrix via hydrophobic-hydrophilic interface interaction.
    He M; Kwok RT; Wang Z; Duan B; Tang BZ; Zhang L
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9508-16. PubMed ID: 24865837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface.
    He M; Xu M; Zhang L
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):585-91. PubMed ID: 23289586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of the water wettability of cellulose film through controlled heterogeneous modification.
    Li W; Wu Y; Liang W; Li B; Liu S
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5726-34. PubMed ID: 24666422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of chiral nematic mesoporous materials.
    Kelly JA; Giese M; Shopsowitz KE; Hamad WY; MacLachlan MJ
    Acc Chem Res; 2014 Apr; 47(4):1088-96. PubMed ID: 24694253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-repellent cellulose fiber networks with multifunctional properties.
    Bayer IS; Fragouli D; Attanasio A; Sorce B; Bertoni G; Brescia R; Di Corato R; Pellegrino T; Kalyva M; Sabella S; Pompa PP; Cingolani R; Athanassiou A
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):4024-31. PubMed ID: 21902239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of nanofibrillated cellulose using amphiphilic block-structured galactoglucomannans.
    Lozhechnikova A; Dax D; Vartiainen J; Willför S; Xu C; Österberg M
    Carbohydr Polym; 2014 Sep; 110():163-72. PubMed ID: 24906743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, characterization and cytocompatibility of polyurethane/cellulose based liquid crystal composite membranes.
    Han W; Tu M; Zeng R; Zhao J; Zhou C
    Carbohydr Polym; 2012 Oct; 90(3):1353-61. PubMed ID: 22939351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of reversible protein aggregate and crystal structure.
    Patro SY; Przybycien TM
    Biophys J; 1996 Jun; 70(6):2888-902. PubMed ID: 8744327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of nanosized islands of dialkyl β-ketoester bonds for efficient hydrophobization of a cellulose film surface.
    Yang Q; Takeuchi M; Saito T; Isogai A
    Langmuir; 2014 Jul; 30(27):8109-18. PubMed ID: 24932878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How electrolyte and polyelectrolyte affect the adsorption of the anionic surfactant SDS onto the surface of a cellulose thin film and the structure of the cellulose film. 1. Hydrophobic cellulose.
    Tucker IM; Petkov JT; Penfold J; Thomas RK
    Langmuir; 2012 Jul; 28(29):10773-80. PubMed ID: 22735050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid methanol confined within functionalized silica nanopores. 2. Solvation dynamics of coumarin 153.
    Elola MD; Rodriguez J; Laria D
    J Phys Chem B; 2011 Nov; 115(44):12859-67. PubMed ID: 21932806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water structuring over the hydrophobic surface of cellulose.
    Miyamoto H; Schnupf U; Brady JW
    J Agric Food Chem; 2014 Nov; 62(46):11017-23. PubMed ID: 25365241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring.
    Kittle JD; Du X; Jiang F; Qian C; Heinze T; Roman M; Esker AR
    Biomacromolecules; 2011 Aug; 12(8):2881-7. PubMed ID: 21574564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational study of solvent effects on the molecular self-assembly of tetrolic acid in solution and implications for the polymorph formed from crystallization.
    Chen J; Trout BL
    J Phys Chem B; 2008 Jul; 112(26):7794-802. PubMed ID: 18529073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels.
    Shi J; Lu L; Guo W; Zhang J; Cao Y
    Carbohydr Polym; 2013 Oct; 98(1):282-9. PubMed ID: 23987346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water.
    Aulin C; Ahola S; Josefsson P; Nishino T; Hirose Y; Osterberg M; Wågberg L
    Langmuir; 2009 Jul; 25(13):7675-85. PubMed ID: 19348478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesive layer-by-layer films of carboxymethylated cellulose nanofibril-dopamine covalent bioconjugates inspired by marine mussel threads.
    Karabulut E; Pettersson T; Ankerfors M; Wågberg L
    ACS Nano; 2012 Jun; 6(6):4731-9. PubMed ID: 22639847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands.
    Sato O; Kubo S; Gu ZZ
    Acc Chem Res; 2009 Jan; 42(1):1-10. PubMed ID: 18837520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion and interaction of aspirin crystals at aqueous-air interfaces.
    Bánsági T; Wrobel MM; Scott SK; Taylor AF
    J Phys Chem B; 2013 Oct; 117(43):13572-7. PubMed ID: 24073925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.