BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24865847)

  • 1. New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface.
    Zorgani MA; Patron K; Desvaux M
    J Comput Aided Mol Des; 2014 Jul; 28(7):721-34. PubMed ID: 24865847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of a highly stable alpha-amylase from the halophilic archaeon Haloarcula hispanica.
    Hutcheon GW; Vasisht N; Bolhuis A
    Extremophiles; 2005 Dec; 9(6):487-95. PubMed ID: 16075161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haloadaptation: insights from comparative modeling studies of halophilic archaeal DHFRs.
    Kastritis PL; Papandreou NC; Hamodrakas SJ
    Int J Biol Macromol; 2007 Oct; 41(4):447-53. PubMed ID: 17675150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Halophilic enzymes: proteins with a grain of salt.
    Mevarech M; Frolow F; Gloss LM
    Biophys Chem; 2000 Aug; 86(2-3):155-64. PubMed ID: 11026680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Halophilic Protein Adaptation Results from Synergistic Residue-Ion Interactions in the Folded and Unfolded States.
    Ortega G; Diercks T; Millet O
    Chem Biol; 2015 Dec; 22(12):1597-607. PubMed ID: 26628359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes.
    Paul S; Bag SK; Das S; Harvill ET; Dutta C
    Genome Biol; 2008 Apr; 9(4):R70. PubMed ID: 18397532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life in unusual environments: progress in understanding the structure and function of enzymes from extreme halophilic bacteria.
    Eisenberg H
    Arch Biochem Biophys; 1995 Apr; 318(1):1-5. PubMed ID: 7726549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic solvent tolerance of halophilic alpha-amylase from a Haloarchaeon, Haloarcula sp. strain S-1.
    Fukushima T; Mizuki T; Echigo A; Inoue A; Usami R
    Extremophiles; 2005 Feb; 9(1):85-9. PubMed ID: 15378403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic contributions to the stability of halophilic proteins.
    Elcock AH; McCammon JA
    J Mol Biol; 1998 Jul; 280(4):731-48. PubMed ID: 9677300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new GH13 subfamily represented by the α-amylase from the halophilic archaeon Haloarcula hispanica.
    Janeček Š; Zámocká B
    Extremophiles; 2020 Mar; 24(2):207-217. PubMed ID: 31734852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii.
    Pieper U; Kapadia G; Mevarech M; Herzberg O
    Structure; 1998 Jan; 6(1):75-88. PubMed ID: 9493269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui.
    Müller-Santos M; de Souza EM; Pedrosa Fde O; Mitchell DA; Longhi S; Carrière F; Canaan S; Krieger N
    Biochim Biophys Acta; 2009 Aug; 1791(8):719-29. PubMed ID: 19303051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and structural analysis of alpha-amylase from the antarctic psychrophile Alteromonas haloplanctis A23.
    Feller G; Payan F; Theys F; Qian M; Haser R; Gerday C
    Eur J Biochem; 1994 Jun; 222(2):441-7. PubMed ID: 8020481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface.
    Siglioccolo A; Paiardini A; Piscitelli M; Pascarella S
    BMC Struct Biol; 2011 Dec; 11():50. PubMed ID: 22192175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatics introduce a trade-off between mesophilic stability and adaptation in halophilic proteins.
    Herrero-Alfonso P; Pejenaute A; Millet O; Ortega-Quintanilla G
    Protein Sci; 2024 Jun; 33(6):e5003. PubMed ID: 38747380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary divergence and salinity-mediated selection in halophilic archaea.
    Dennis PP; Shimmin LC
    Microbiol Mol Biol Rev; 1997 Mar; 61(1):90-104. PubMed ID: 9106366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of an inulosucrase from Halalkalicoccus jeotgali B3T, a halophilic archaeal strain.
    Ghauri K; Pijning T; Munawar N; Ali H; Ghauri MA; Anwar MA; Wallis R
    FEBS J; 2021 Oct; 288(19):5723-5736. PubMed ID: 33783128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Carboxylesterase Derived from a Compost Metagenome Exhibiting High Stability and Activity towards High Salinity.
    Lu M; Daniel R
    Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33478024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Close evolutionary relatedness of alpha-amylases from Archaea and plants.
    Janecek S; Lévêque E; Belarbi A; Haye B
    J Mol Evol; 1999 Apr; 48(4):421-6. PubMed ID: 10079280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation.
    Winter JA; Christofi P; Morroll S; Bunting KA
    BMC Struct Biol; 2009 Aug; 9():55. PubMed ID: 19698123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.