These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

611 related articles for article (PubMed ID: 24866260)

  • 1. Novel 1:1 labeling and purification process for C-terminal thioester and single cysteine recombinant proteins using generic peptidic toolbox reagents.
    Portal CF; Seifert JM; Buehler C; Meisner-Kober NC; Auer M
    Bioconjug Chem; 2014 Jul; 25(7):1213-22. PubMed ID: 24866260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-native, site-specific and purification-free protein labeling for quantitative protein interaction analysis by MicroScale Thermophoresis.
    Bartoschik T; Galinec S; Kleusch C; Walkiewicz K; Breitsprecher D; Weigert S; Muller YA; You C; Piehler J; Vercruysse T; Daelemans D; Tschammer N
    Sci Rep; 2018 Mar; 8(1):4977. PubMed ID: 29563556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent Biosensors Based on Single-Molecule Counting.
    Ma F; Li Y; Tang B; Zhang CY
    Acc Chem Res; 2016 Sep; 49(9):1722-30. PubMed ID: 27583695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An accurate proteomic quantification method: fluorescence labeling absolute quantification (FLAQ) using multidimensional liquid chromatography and tandem mass spectrometry.
    Liu J; Liu Y; Gao M; Zhang X
    Proteomics; 2012 Aug; 12(14):2258-70. PubMed ID: 22887945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeling and purification of cellulose-binding proteins for high resolution fluorescence applications.
    Moran-Mirabal JM; Corgie SC; Bolewski JC; Smith HM; Cipriany BR; Craighead HG; Walker LP
    Anal Chem; 2009 Oct; 81(19):7981-7. PubMed ID: 19728729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-protein interactions as a tool for site-specific labeling of proteins.
    Jäger M; Michalet X; Weiss S
    Protein Sci; 2005 Aug; 14(8):2059-68. PubMed ID: 15987886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of free cysteines in membrane and soluble proteins using a fluorescent dye and thermal unfolding.
    Branigan E; Pliotas C; Hagelueken G; Naismith JH
    Nat Protoc; 2013 Nov; 8(11):2090-7. PubMed ID: 24091556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.
    Kikot P; Polat A; Achilli E; Fernandez Lahore M; Grasselli M
    J Mol Recognit; 2014 Nov; 27(11):659-68. PubMed ID: 25277090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Labeling of Proteins for Single-Molecule Fluorescence Spectroscopy.
    Zosel F; Holla A; Schuler B
    Methods Mol Biol; 2022; 2376():207-233. PubMed ID: 34845612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting molecular interactions in live-cell single-molecule imaging with proximity-assisted photoactivation (PAPA).
    Graham TGW; Ferrie JJ; Dailey GM; Tjian R; Darzacq X
    Elife; 2022 Aug; 11():. PubMed ID: 35976226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-Specific Three-Color Labeling of α-Synuclein via Conjugation to Uniquely Reactive Cysteines during Assembly by Native Chemical Ligation.
    Lee TC; Moran CR; Cistrone PA; Dawson PE; Deniz AA
    Cell Chem Biol; 2018 Jun; 25(6):797-801.e4. PubMed ID: 29681525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biarsenical-tetracysteine motif as a fluorescent tag for detection in capillary electrophoresis.
    Kottegoda S; Aoto PC; Sims CE; Allbritton NL
    Anal Chem; 2008 Jul; 80(14):5358-66. PubMed ID: 18522433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein derivitization-expressed protein ligation.
    Mitchell SF; Lorsch JR
    Methods Enzymol; 2014; 536():95-108. PubMed ID: 24423270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proximity-Induced Covalent Labeling of Proteins with a Reactive Fluorophore-Binding Peptide Tag.
    Sunbul M; Nacheva L; Jäschke A
    Bioconjug Chem; 2015 Aug; 26(8):1466-9. PubMed ID: 26086394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observing protein interactions and their stoichiometry in living cells by brightness analysis of fluorescence fluctuation experiments.
    Chen Y; Johnson J; Macdonald P; Wu B; Mueller JD
    Methods Enzymol; 2010; 472():345-63. PubMed ID: 20580971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-guided approach to site-specific fluorophore labeling of the lac repressor LacI.
    Kipper K; Eremina N; Marklund E; Tubasum S; Mao G; Lehmann LC; Elf J; Deindl S
    PLoS One; 2018; 13(6):e0198416. PubMed ID: 29856839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal and Quantitative Method To Evaluate Inhibitor Potency for Cysteinome Proteins Using a Nonspecific Activity-Based Protein Profiling Probe.
    Sameshima T; Tanaka Y; Miyahisa I
    Biochemistry; 2017 Jun; 56(23):2921-2927. PubMed ID: 28520393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophysical properties of Na
    Naumann G; Lippmann K; Eilers J
    J Microsc; 2018 Nov; 272(2):136-144. PubMed ID: 30191999
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 31.