These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 24866694)

  • 1. Information handling by the brain: proposal of a new "paradigm" involving the roamer type of volume transmission and the tunneling nanotube type of wiring transmission.
    Agnati LF; Guidolin D; Maura G; Marcoli M; Leo G; Carone C; De Caro R; Genedani S; Borroto-Escuela DO; Fuxe K
    J Neural Transm (Vienna); 2014 Dec; 121(12):1431-49. PubMed ID: 24866694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the role of receptor-receptor interactions and volume transmission in learning and memory.
    Guidolin D; Fuxe K; Neri G; Nussdorfer GG; Agnati LF
    Brain Res Rev; 2007 Aug; 55(1):119-33. PubMed ID: 17408566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks.
    Agnati LF; Fuxe K
    Philos Trans R Soc Lond B Biol Sci; 2014 Sep; 369(1652):. PubMed ID: 25135966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding wiring and volume transmission.
    Agnati LF; Guidolin D; Guescini M; Genedani S; Fuxe K
    Brain Res Rev; 2010 Sep; 64(1):137-59. PubMed ID: 20347870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The discovery of central monoamine neurons gave volume transmission to the wired brain.
    Fuxe K; Dahlström AB; Jonsson G; Marcellino D; Guescini M; Dam M; Manger P; Agnati L
    Prog Neurobiol; 2010 Feb; 90(2):82-100. PubMed ID: 19853007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission.
    Fuxe K; Dahlström A; Höistad M; Marcellino D; Jansson A; Rivera A; Diaz-Cabiale Z; Jacobsen K; Tinner-Staines B; Hagman B; Leo G; Staines W; Guidolin D; Kehr J; Genedani S; Belluardo N; Agnati LF
    Brain Res Rev; 2007 Aug; 55(1):17-54. PubMed ID: 17433836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives.
    Agnati LF; Leo G; Zanardi A; Genedani S; Rivera A; Fuxe K; Guidolin D
    Acta Physiol (Oxf); 2006; 187(1-2):329-44. PubMed ID: 16734770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One century of progress in neuroscience founded on Golgi and Cajal's outstanding experimental and theoretical contributions.
    Agnati LF; Genedani S; Leo G; Rivera A; Guidolin D; Fuxe K
    Brain Res Rev; 2007 Aug; 55(1):167-89. PubMed ID: 17467058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intercellular communication in the brain: wiring versus volume transmission.
    Agnati LF; Zoli M; Strömberg I; Fuxe K
    Neuroscience; 1995 Dec; 69(3):711-26. PubMed ID: 8596642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the role of the extracellular space on the holistic behavior of the brain.
    Marcoli M; Agnati LF; Benedetti F; Genedani S; Guidolin D; Ferraro L; Maura G; Fuxe K
    Rev Neurosci; 2015; 26(5):489-506. PubMed ID: 26103627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Communication and computation in the central nervous system.
    Benfenati F; Agnati LF
    Funct Neurol; 1991; 6(3):202-9. PubMed ID: 1683850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The emergence of the volume transmission concept.
    Zoli M; Torri C; Ferrari R; Jansson A; Zini I; Fuxe K; Agnati LF
    Brain Res Brain Res Rev; 1998 May; 26(2-3):136-47. PubMed ID: 9651506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glial cells in neuronal network function.
    Araque A; Navarrete M
    Philos Trans R Soc Lond B Biol Sci; 2010 Aug; 365(1551):2375-81. PubMed ID: 20603358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal codes and computations for sensory representation and scene analysis.
    Cariani PA
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1100-11. PubMed ID: 15484887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New dimensions of connectomics and network plasticity in the central nervous system.
    Guidolin D; Marcoli M; Maura G; Agnati LF
    Rev Neurosci; 2017 Feb; 28(2):113-132. PubMed ID: 28030363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic Failure Differentially Affects Pattern Formation in Heterogenous Networks.
    Budak M; Zochowski M
    Front Neural Circuits; 2019; 13():31. PubMed ID: 31139055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system.
    Pan RK; Chatterjee N; Sinha S
    PLoS One; 2010 Feb; 5(2):e9240. PubMed ID: 20179757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The meaning of mammalian adult neurogenesis and the function of newly added neurons: the "small-world" network.
    Manev R; Manev H
    Med Hypotheses; 2005; 64(1):114-7. PubMed ID: 15533625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image segmentation by networks of spiking neurons.
    Buhmann JM; Lange T; Ramacher U
    Neural Comput; 2005 May; 17(5):1010-31. PubMed ID: 15829098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsupervised learning and adaptation in a model of adult neurogenesis.
    Cecchi GA; Petreanu LT; Alvarez-Buylla A; Magnasco MO
    J Comput Neurosci; 2001; 11(2):175-82. PubMed ID: 11717533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.