These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 24866756)

  • 1. The dawn of evolutionary genome engineering.
    Pál C; Papp B; Pósfai G
    Nat Rev Genet; 2014 Jul; 15(7):504-12. PubMed ID: 24866756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programming cells by multiplex genome engineering and accelerated evolution.
    Wang HH; Isaacs FJ; Carr PA; Sun ZZ; Xu G; Forest CR; Church GM
    Nature; 2009 Aug; 460(7257):894-898. PubMed ID: 19633652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement.
    Isaacs FJ; Carr PA; Wang HH; Lajoie MJ; Sterling B; Kraal L; Tolonen AC; Gianoulis TA; Goodman DB; Reppas NB; Emig CJ; Bang D; Hwang SJ; Jewett MC; Jacobson JM; Church GM
    Science; 2011 Jul; 333(6040):348-53. PubMed ID: 21764749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering by genome shuffling.
    Stephanopoulos G
    Nat Biotechnol; 2002 Jul; 20(7):666-8. PubMed ID: 12089547
    [No Abstract]   [Full Text] [Related]  

  • 5. Genome-Wide Abolishment of Mobile Genetic Elements Using Genome Shuffling and CRISPR/Cas-Assisted MAGE Allows the Efficient Stabilization of a Bacterial Chassis.
    Umenhoffer K; Draskovits G; Nyerges Á; Karcagi I; Bogos B; Tímár E; Csörgő B; Herczeg R; Nagy I; Fehér T; Pál C; Pósfai G
    ACS Synth Biol; 2017 Aug; 6(8):1471-1483. PubMed ID: 28426191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next-generation genetic code expansion.
    Arranz-Gibert P; Vanderschuren K; Isaacs FJ
    Curr Opin Chem Biol; 2018 Oct; 46():203-211. PubMed ID: 30072242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed tracking of combinatorial genomic mutations in engineered cell populations.
    Zeitoun RI; Garst AD; Degen GD; Pines G; Mansell TJ; Glebes TY; Boyle NR; Gill RT
    Nat Biotechnol; 2015 Jun; 33(6):631-7. PubMed ID: 25798935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic networks of Sodalis glossinidius: a systems biology approach to reductive evolution.
    Belda E; Silva FJ; Peretó J; Moya A
    PLoS One; 2012; 7(1):e30652. PubMed ID: 22292008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evolutionary optimization of a rhodopsin-based phototrophic metabolism in Escherichia coli.
    Kim HA; Kim HJ; Park J; Choi AR; Heo K; Jeong H; Jung KH; Seok YJ; Kim P; Lee SJ
    Microb Cell Fact; 2017 Jun; 16(1):111. PubMed ID: 28619035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA.
    Gallagher RR; Li Z; Lewis AO; Isaacs FJ
    Nat Protoc; 2014 Oct; 9(10):2301-16. PubMed ID: 25188632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shaking up genome engineering.
    Tipton KA; Dueber J
    Nat Biotechnol; 2010 Aug; 28(8):812-3. PubMed ID: 20697406
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale.
    Herring CD; Raghunathan A; Honisch C; Patel T; Applebee MK; Joyce AR; Albert TJ; Blattner FR; van den Boom D; Cantor CR; Palsson BØ
    Nat Genet; 2006 Dec; 38(12):1406-12. PubMed ID: 17086184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary genome engineering using a restriction-modification system.
    Asakura Y; Kojima H; Kobayashi I
    Nucleic Acids Res; 2011 Nov; 39(20):9034-46. PubMed ID: 21785135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering.
    Ryu YS; Biswas RK; Shin K; Parisutham V; Kim SM; Lee SK
    PLoS One; 2014; 9(4):e94266. PubMed ID: 24747264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evolution as if by a MAGE].
    Häfner S
    Med Sci (Paris); 2010 Feb; 26(2):142-3. PubMed ID: 20188042
    [No Abstract]   [Full Text] [Related]  

  • 16. Genome shuffling leads to rapid phenotypic improvement in bacteria.
    Zhang YX; Perry K; Vinci VA; Powell K; Stemmer WP; del Cardayré SB
    Nature; 2002 Feb; 415(6872):644-6. PubMed ID: 11832946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design.
    Dymond JS; Richardson SM; Coombes CE; Babatz T; Muller H; Annaluru N; Blake WJ; Schwerzmann JW; Dai J; Lindstrom DL; Boeke AC; Gottschling DE; Chandrasegaran S; Bader JS; Boeke JD
    Nature; 2011 Sep; 477(7365):471-6. PubMed ID: 21918511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-saturation mutagenesis is more efficient than DNA shuffling for the directed evolution of beta-fucosidase from beta-galactosidase.
    Parikh MR; Matsumura I
    J Mol Biol; 2005 Sep; 352(3):621-8. PubMed ID: 16095606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dealing with complexity: evolutionary engineering and genome shuffling.
    Petri R; Schmidt-Dannert C
    Curr Opin Biotechnol; 2004 Aug; 15(4):298-304. PubMed ID: 15296928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing complex phenotypes through model-guided multiplex genome engineering.
    Kuznetsov G; Goodman DB; Filsinger GT; Landon M; Rohland N; Aach J; Lajoie MJ; Church GM
    Genome Biol; 2017 May; 18(1):100. PubMed ID: 28545477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.