These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 24867229)
1. One-pot synthesis and electrocatalytic properties of Pd@Pt core-shell nanocrystals with tailored morphologies. Kim Y; Lee YW; Kim M; Han SW Chemistry; 2014 Jun; 20(26):7901-5. PubMed ID: 24867229 [TBL] [Abstract][Full Text] [Related]
2. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts. Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263 [TBL] [Abstract][Full Text] [Related]
3. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. Hong JW; Kang SW; Choi BS; Kim D; Lee SB; Han SW ACS Nano; 2012 Mar; 6(3):2410-9. PubMed ID: 22360814 [TBL] [Abstract][Full Text] [Related]
4. Concave Pd-Pt Core-Shell Nanocrystals with Ultrathin Pt Shell Feature and Enhanced Catalytic Performance. Zhang Y; Bu L; Jiang K; Guo S; Huang X Small; 2016 Feb; 12(6):706-12. PubMed ID: 26708012 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness. Li Y; Wang ZW; Chiu CY; Ruan L; Yang W; Yang Y; Palmer RE; Huang Y Nanoscale; 2012 Feb; 4(3):845-51. PubMed ID: 22159178 [TBL] [Abstract][Full Text] [Related]
6. Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation. Ding LX; Li GR; Wang ZL; Liu ZQ; Liu H; Tong YX Chemistry; 2012 Jul; 18(27):8386-91. PubMed ID: 22639332 [TBL] [Abstract][Full Text] [Related]
7. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. Lu CL; Prasad KS; Wu HL; Ho JA; Huang MH J Am Chem Soc; 2010 Oct; 132(41):14546-53. PubMed ID: 20873739 [TBL] [Abstract][Full Text] [Related]
8. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Zhang H; Jin M; Xia Y Chem Soc Rev; 2012 Dec; 41(24):8035-49. PubMed ID: 23080521 [TBL] [Abstract][Full Text] [Related]
9. Facile synthesis of prickly platinum-palladium core-shell nanocrystals and their boosted electrocatalytic activity towards polyhydric alcohols oxidation and hydrogen evolution. Li DN; He YM; Feng JJ; Zhang QL; Zhang L; Wu L; Wang AJ J Colloid Interface Sci; 2018 Apr; 516():476-483. PubMed ID: 29408137 [TBL] [Abstract][Full Text] [Related]
10. One-Pot Synthesis of Pd@Pt Lee CT; Wang H; Zhao M; Yang TH; Vara M; Xia Y Chemistry; 2019 Apr; 25(20):5322-5329. PubMed ID: 30768814 [TBL] [Abstract][Full Text] [Related]
11. Dendritic Ternary Alloy Nanocrystals for Enhanced Electrocatalytic Oxidation Reactions. Lee YW; Im M; Hong JW; Han SW ACS Appl Mater Interfaces; 2017 Dec; 9(50):44018-44026. PubMed ID: 29172429 [TBL] [Abstract][Full Text] [Related]
12. One-pot synthesis of trimetallic Au@PdPt core-shell nanoparticles with high catalytic performance. Kang SW; Lee YW; Park Y; Choi BS; Hong JW; Park KH; Han SW ACS Nano; 2013 Sep; 7(9):7945-55. PubMed ID: 23915173 [TBL] [Abstract][Full Text] [Related]
13. Heteroepitaxial growth of core-shell and core-multishell nanocrystals composed of palladium and gold. Wang F; Sun LD; Feng W; Chen H; Yeung MH; Wang J; Yan CH Small; 2010 Nov; 6(22):2566-75. PubMed ID: 20963792 [TBL] [Abstract][Full Text] [Related]
14. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances. Kuai L; Geng B; Wang S; Sang Y Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952 [TBL] [Abstract][Full Text] [Related]
15. Controlled synthesis of dendritic Au@Pt core-shell nanomaterials for use as an effective fuel cell electrocatalyst. Wang S; Kristian N; Jiang S; Wang X Nanotechnology; 2009 Jan; 20(2):025605. PubMed ID: 19417274 [TBL] [Abstract][Full Text] [Related]
16. Polyoxometalate-mediated one-pot synthesis of Pd nanocrystals with controlled morphologies for efficient chemical and electrochemical catalysis. Kim D; Seog JH; Kim M; Yang M; Gillette E; Lee SB; Han SW Chemistry; 2015 Mar; 21(14):5387-94. PubMed ID: 25684660 [TBL] [Abstract][Full Text] [Related]
17. Supersaturation-controlled surface structure evolution of Pd@Pt core-shell nanocrystals: enhancement of the ORR activity at a sub-10 nm scale. Qi K; Zheng W; Cui X Nanoscale; 2016 Jan; 8(3):1698-703. PubMed ID: 26693587 [TBL] [Abstract][Full Text] [Related]
18. Solvothermal synthesis of Pt-Pd alloys with selective shapes and their enhanced electrocatalytic activities. Zhang ZC; Hui JF; Guo ZG; Yu QY; Xu B; Zhang X; Liu ZC; Xu CM; Gao JS; Wang X Nanoscale; 2012 Apr; 4(8):2633-9. PubMed ID: 22402765 [TBL] [Abstract][Full Text] [Related]
19. Solvent-Mediated Shell Dimension Reconstruction of Core@Shell PdAu@Pd Nanocrystals for Robust C1 and C2 Alcohol Electrocatalysis. Gao F; Zhang Y; You H; Li Z; Zou B; Du Y Small; 2021 Aug; 17(32):e2101428. PubMed ID: 34213824 [TBL] [Abstract][Full Text] [Related]
20. Facile synthesis of Au-Pd core-shell nanocrystals with systematic shape evolution and tunable size for plasmonic property examination. Chiu CY; Yang MY; Lin FC; Huang JS; Huang MH Nanoscale; 2014 Jul; 6(13):7656-65. PubMed ID: 24898776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]