BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24867287)

  • 61. Clinical relevance of molecular characteristics in Burkitt lymphoma differs according to age.
    Burkhardt B; Michgehl U; Rohde J; Erdmann T; Berning P; Reutter K; Rohde M; Borkhardt A; Burmeister T; Dave S; Tzankov A; Dugas M; Sandmann S; Fend F; Finger J; Mueller S; Gökbuget N; Haferlach T; Kern W; Hartmann W; Klapper W; Oschlies I; Richter J; Kontny U; Lutz M; Maecker-Kolhoff B; Ott G; Rosenwald A; Siebert R; von Stackelberg A; Strahm B; Woessmann W; Zimmermann M; Zapukhlyak M; Grau M; Lenz G
    Nat Commun; 2022 Jul; 13(1):3881. PubMed ID: 35794096
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Downstream regulatory elements in the c-myc gene.
    Zajac-Kaye M; Yu B; Ben-Baruch N
    Curr Top Microbiol Immunol; 1990; 166():279-84. PubMed ID: 2073807
    [No Abstract]   [Full Text] [Related]  

  • 63. New pathogenic mechanisms in Burkitt lymphoma.
    Campo E
    Nat Genet; 2012 Dec; 44(12):1288-9. PubMed ID: 23192177
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization of IG-MYC-breakpoints and their application for quantitative minimal disease monitoring in high-risk pediatric Burkitt-lymphoma and -leukemia.
    Möker P; Zur Stadt U; Zimmermann M; Alawi M; Mueller S; Finger J; Knörr F; Riquelme A; Oschlies I; Klapper W; Bradtke J; Burkhardt B; Woessmann W; Damm-Welk C
    Leukemia; 2022 Sep; 36(9):2343-2346. PubMed ID: 35790817
    [No Abstract]   [Full Text] [Related]  

  • 65. Detection of clinically relevant early genomic lesions in B-cell malignancies from circulating tumour DNA using a single hybridisation-based next generation sequencing assay.
    Blombery PA; Ryland GL; Markham J; Guinto J; Wall M; McBean M; Jones K; Thompson ER; Cameron DL; Papenfuss AT; Prince MH; Dickinson M; Westerman DA
    Br J Haematol; 2018 Oct; 183(1):146-149. PubMed ID: 28880377
    [No Abstract]   [Full Text] [Related]  

  • 66. Concerning data inconsistencies in Burkitt lymphoma genome study.
    Rushton CK; Dreval K; Morin RD
    Blood; 2023 Sep; 142(10):933-936. PubMed ID: 36302254
    [No Abstract]   [Full Text] [Related]  

  • 67. Euphorbia species.
    Abdalla SH
    Lancet; 1992 Feb; 339(8790):434. PubMed ID: 1346699
    [No Abstract]   [Full Text] [Related]  

  • 68. Endemic Burkitt Lymphoma in second-degree relatives in Northern Uganda: in-depth genome-wide analysis suggests clues about genetic susceptibility.
    Gouveia MH; Otim I; Ogwang MD; Wang M; Zhu B; Cole N; Luo W; Hicks B; Jones K; Oehl-Huber K; Ayers LW; Pittaluga S; Legason ID; Nabalende H; Kerchan P; Kinyera T; Kawira E; Brubaker G; Levin AG; Guertler L; Kim J; Stewart DR; Adde M; Magrath I; Bergen AW; Reynolds SJ; Yeager M; Bhatia K; Adeyemo AA; Prokunina-Olsson L; Dean M; Shriner D; Rotimi CN; Chanock S; Siebert R; Mbulaiteye SM
    Leukemia; 2021 Apr; 35(4):1209-1213. PubMed ID: 33051549
    [No Abstract]   [Full Text] [Related]  

  • 69. Additional thoughts regarding barebacking contradictions.
    Chrisman SW
    Qual Health Res; 2013 May; 23(5):711. PubMed ID: 23554361
    [No Abstract]   [Full Text] [Related]  

  • 70. Therapeutic implications of intratumor heterogeneity for TP53 mutational status in Burkitt lymphoma.
    Derenzini E; Iacobucci I; Agostinelli C; Imbrogno E; Storlazzi CT; L Abbate A; Casadei B; Ferrari A; Di Rora AG; Martinelli G; Pileri S; Zinzani PL
    Exp Hematol Oncol; 2015; 4():24. PubMed ID: 26312160
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies.
    Pollock SB; Hu A; Mou Y; Martinko AJ; Julien O; Hornsby M; Ploder L; Adams JJ; Geng H; Müschen M; Sidhu SS; Moffat J; Wells JA
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):2836-2841. PubMed ID: 29476010
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A rapid deteriorated primary cerebellar Burkitt lymphomas with tiger-striped appearance.
    Zhang L; Zhang J; Wang Y
    Jpn J Clin Oncol; 2022 May; 52(5):506-508. PubMed ID: 35137166
    [No Abstract]   [Full Text] [Related]  

  • 73. [Genetic studies on lymphoma].
    Yamaguchi K; Kataoka K
    Rinsho Ketsueki; 2021; 62(8):1121-1130. PubMed ID: 34497199
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Where to go with barebacking research.
    Frasca T; Balan I; Carballo-Diéguez A
    Qual Health Res; 2013 May; 23(5):712. PubMed ID: 23554362
    [No Abstract]   [Full Text] [Related]  

  • 75. [Clinicopathological features and molecular genetics of Burkitt-like lymphoma with 11q aberration].
    Wang L; Jin YP; Gao G; Wu DY; Zhou XJ; Liu YY; Xia QX
    Zhonghua Bing Li Xue Za Zhi; 2021 Jun; 50(6):655-657. PubMed ID: 34078056
    [No Abstract]   [Full Text] [Related]  

  • 76. Metabolic path toward TCF3 inactivation in Burkitt lymphoma.
    Klein U
    Blood; 2022 Jan; 139(4):475-476. PubMed ID: 35084477
    [No Abstract]   [Full Text] [Related]  

  • 77. A new Burkitt "look-alike" lymphoma.
    Cairo MS
    Blood; 2019 Feb; 133(9):889-891. PubMed ID: 30819778
    [No Abstract]   [Full Text] [Related]  

  • 78. Clonal origin for individual Burkitt tumours.
    Fraser GR
    Lancet; 1970 May; 1(7653):948. PubMed ID: 4191570
    [No Abstract]   [Full Text] [Related]  

  • 79. Two sides of the same coin: transdifferentiation from Burkitt lymphoma to histiocytic sarcoma.
    Etancelin P; Boussaid I
    Blood; 2023 Nov; 142(18):1576. PubMed ID: 37917080
    [No Abstract]   [Full Text] [Related]  

  • 80. Panea RI, Love CL, Shingleton JR, et al. The whole-genome landscape of Burkitt lymphoma subtypes. Blood. 2019;134(19):1598-1607.
    Blood; 2023 Sep; 142(10):940. PubMed ID: 37676691
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.