These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24867297)

  • 1. Numerical investigations of the mechanical properties of a braided non-vascular stent design using finite element method.
    Ni XY; Pan CW; Gangadhara Prusty B
    Comput Methods Biomech Biomed Engin; 2015 Aug; 18(10):1117-1125. PubMed ID: 24867297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigations of the mechanical properties of braided vascular stents.
    Fu W; Xia Q; Yan R; Qiao A
    Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Looped ends versus open ends braided stent: A comparison of the mechanical behaviour using analytical and numerical methods.
    Shanahan C; Tiernan P; Tofail SAM
    J Mech Behav Biomed Mater; 2017 Nov; 75():581-591. PubMed ID: 28863400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental evaluation of the mechanics of bare and polymer-covered self-expanding wire braided stents.
    McKenna CG; Vaughan TJ
    J Mech Behav Biomed Mater; 2020 Mar; 103():103549. PubMed ID: 31783281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between geometrical parameters and mechanical properties for a helical braided flow diverter stent.
    Suzuki T; Takao H; Fujimura S; Dahmani C; Ishibashi T; Mamori H; Fukushima N; Murayama Y; Yamamoto M
    Technol Health Care; 2017 Aug; 25(4):611-623. PubMed ID: 28506004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical property analysis and design parameter optimization of a novel nitinol nasal stent based on numerical simulation.
    Yu H; Zheng L; Qiu J; Wang J; Xu Y; Fan B; Li R; Liu J; Wang C; Fan Y
    Front Bioeng Biotechnol; 2022; 10():1064605. PubMed ID: 36466347
    [No Abstract]   [Full Text] [Related]  

  • 7. A finite element investigation on design parameters of bare and polymer-covered self-expanding wire braided stents.
    McKenna CG; Vaughan TJ
    J Mech Behav Biomed Mater; 2021 Mar; 115():104305. PubMed ID: 33454463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A methodology for the customized design of colonic stents based on a parametric model.
    Puértolas S; Navallas D; Herrera A; López E; Millastre J; Ibarz E; Gabarre S; Puértolas JA; Gracia L
    J Mech Behav Biomed Mater; 2017 Jul; 71():250-261. PubMed ID: 28365542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual optimization of self-expandable braided wire stents.
    De Beule M; Van Cauter S; Mortier P; Van Loo D; Van Impe R; Verdonck P; Verhegghe B
    Med Eng Phys; 2009 May; 31(4):448-53. PubMed ID: 19117791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-objective design optimization of bioresorbable braided stents.
    Carbonaro D; Lucchetti A; Audenino AL; Gries T; Vaughan TJ; Chiastra C
    Comput Methods Programs Biomed; 2023 Dec; 242():107781. PubMed ID: 37683458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element analysis of braided dense-mesh stents for carotid artery stenosis.
    Zhao Y; Cui H
    Comput Methods Biomech Biomed Engin; 2024 Apr; 27(5):609-619. PubMed ID: 37018022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent.
    García A; Peña E; Martínez MA
    J Mech Behav Biomed Mater; 2012 Jun; 10():166-75. PubMed ID: 22520428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed-braided stent: An effective way to improve comprehensive mechanical properties of poly (L-lactic acid) self-expandable braided stent.
    Liu M; Tian Y; Cheng J; Zhang Y; Zhao G; Ni Z
    J Mech Behav Biomed Mater; 2022 Apr; 128():105123. PubMed ID: 35183885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents.
    Nuutinen JP; Clerc C; Törmälä P
    J Biomater Sci Polym Ed; 2003; 14(7):677-87. PubMed ID: 12903736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical characterizations of braided composite stents made of helical polyethylene terephthalate strips and NiTi wires.
    Zheng Q; Dong P; Li Z; Han X; Zhou C; An M; Gu L
    Nanotechnol Rev; 2019 Jan; 8(1):168-174. PubMed ID: 35966892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of mechanical behavior of temperature-responsive braided stents made of shape memory polyurethanes.
    Kim JH; Kang TJ; Yu WR
    J Biomech; 2010 Mar; 43(4):632-43. PubMed ID: 19906380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental investigation of the mechanical performance of PLLA wire-braided stents.
    Lucchetti A; Emonts C; Idrissi A; Gries T; Vaughan TJ
    J Mech Behav Biomed Mater; 2023 Feb; 138():105568. PubMed ID: 36459705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of design parameters on the radial force of percutaneous aortic valve stents.
    Kumar GV; Mathew L
    Cardiovasc Revasc Med; 2010; 11(2):101-4. PubMed ID: 20347800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling of braided venous stents - Effect of design features and device-tissue interaction on stent performance.
    Ubachs R; van der Sluis O; Smith S; Mertens J
    J Mech Behav Biomed Mater; 2023 Jun; 142():105857. PubMed ID: 37099918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.