These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 24867675)

  • 1. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease.
    Wolf M; White KE
    Curr Opin Nephrol Hypertens; 2014 Jul; 23(4):411-9. PubMed ID: 24867675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Phosphate metabolism and iron deficiency].
    Yokoyama K
    Clin Calcium; 2016 Feb; 26(2):241-9. PubMed ID: 26813504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice.
    Farrow EG; Yu X; Summers LJ; Davis SI; Fleet JC; Allen MR; Robling AG; Stayrook KR; Jideonwo V; Magers MJ; Garringer HJ; Vidal R; Chan RJ; Goodwin CB; Hui SL; Peacock M; White KE
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):E1146-55. PubMed ID: 22006328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathogenic role of Fgf23 in Dmp1-null mice.
    Liu S; Zhou J; Tang W; Menard R; Feng JQ; Quarles LD
    Am J Physiol Endocrinol Metab; 2008 Aug; 295(2):E254-61. PubMed ID: 18559986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteocyte regulation of phosphate homeostasis and bone mineralization underlies the pathophysiology of the heritable disorders of rickets and osteomalacia.
    Feng JQ; Clinkenbeard EL; Yuan B; White KE; Drezner MK
    Bone; 2013 Jun; 54(2):213-21. PubMed ID: 23403405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans.
    Imel EA; Peacock M; Gray AK; Padgett LR; Hui SL; Econs MJ
    J Clin Endocrinol Metab; 2011 Nov; 96(11):3541-9. PubMed ID: 21880793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice.
    Clinkenbeard EL; Farrow EG; Summers LJ; Cass TA; Roberts JL; Bayt CA; Lahm T; Albrecht M; Allen MR; Peacock M; White KE
    J Bone Miner Res; 2014 Feb; 29(2):361-9. PubMed ID: 23873717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral Iron Replacement Normalizes Fibroblast Growth Factor 23 in Iron-Deficient Patients With Autosomal Dominant Hypophosphatemic Rickets.
    Imel EA; Liu Z; Coffman M; Acton D; Mehta R; Econs MJ
    J Bone Miner Res; 2020 Feb; 35(2):231-238. PubMed ID: 31652009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron deficiency plays essential roles in the trigger, treatment, and prognosis of autosomal dominant hypophosphatemic rickets.
    Liu C; Li X; Zhao Z; Chi Y; Cui L; Zhang Q; Ping F; Chai X; Jiang Y; Wang O; Li M; Xing X; Xia W
    Osteoporos Int; 2021 Apr; 32(4):737-745. PubMed ID: 32995940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis.
    Edmonston D; Wolf M
    Nat Rev Nephrol; 2020 Jan; 16(1):7-19. PubMed ID: 31519999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate homeostasis and genetic mutations of familial hypophosphatemic rickets.
    Razali NN; Hwu TT; Thilakavathy K
    J Pediatr Endocrinol Metab; 2015 Sep; 28(9-10):1009-17. PubMed ID: 25894638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FGF23 analysis of a Chinese family with autosomal dominant hypophosphatemic rickets.
    Sun Y; Wang O; Xia W; Jiang Y; Li M; Xing X; Hu Y; Liu H; Meng X; Zhou X
    J Bone Miner Metab; 2012 Jan; 30(1):78-84. PubMed ID: 21710177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Phex mutation in a murine model of X-linked hypophosphatemia alters phosphate responsiveness of bone cells.
    Ichikawa S; Austin AM; Gray AK; Econs MJ
    J Bone Miner Res; 2012 Feb; 27(2):453-60. PubMed ID: 22006791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets.
    Imel EA; Hui SL; Econs MJ
    J Bone Miner Res; 2007 Apr; 22(4):520-6. PubMed ID: 17227222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic rescue of glycosylation-deficient Fgf23 in the Galnt3 knockout mouse.
    Ichikawa S; Gray AK; Padgett LR; Allen MR; Clinkenbeard EL; Sarpa NM; White KE; Econs MJ
    Endocrinology; 2014 Oct; 155(10):3891-8. PubMed ID: 25051439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An autosomal dominant hypophosphatemic rickets phenotype in a Tunisian family caused by a new FGF23 missense mutation.
    Gribaa M; Younes M; Bouyacoub Y; Korbaa W; Ben Charfeddine I; Touzi M; Adala L; Mamay O; Bergaoui N; Saad A
    J Bone Miner Metab; 2010; 28(1):111-5. PubMed ID: 19655082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Earlier Onset in Autosomal Dominant Hypophosphatemic Rickets of R179 than R176 Mutations in Fibroblast Growth Factor 23: Report of 20 Chinese Cases and Review of the Literature.
    Liu C; Zhao Z; Wang O; Li M; Xing X; Hsieh E; Fukumoto S; Jiang Y; Xia W
    Calcif Tissue Int; 2019 Nov; 105(5):476-486. PubMed ID: 31486862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging role of fibroblast growth factor 23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization.
    Liu S; Gupta A; Quarles LD
    Curr Opin Nephrol Hypertens; 2007 Jul; 16(4):329-35. PubMed ID: 17565275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteocytes and the pathogenesis of hypophosphatemic rickets.
    Yamazaki M; Michigami T
    Front Endocrinol (Lausanne); 2022; 13():1005189. PubMed ID: 36246908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron and fibroblast growth factor 23 in X-linked hypophosphatemia.
    Imel EA; Gray AK; Padgett LR; Econs MJ
    Bone; 2014 Mar; 60():87-92. PubMed ID: 24325979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.