BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24867708)

  • 1. Sources and fates of heavy metals in a mining-impacted stream: temporal variability and the role of iron oxides.
    Schaider LA; Senn DB; Estes ER; Brabander DJ; Shine JP
    Sci Total Environ; 2014 Aug; 490():456-66. PubMed ID: 24867708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Speciation and bioavailability of heavy metals in paddy soil irrigated by acid mine drainage].
    Xu C; Xia BC; Wu HN; Lin XF; Qiu RL
    Huan Jing Ke Xue; 2009 Mar; 30(3):900-6. PubMed ID: 19432348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China.
    Sun Z; Xie X; Wang P; Hu Y; Cheng H
    Sci Total Environ; 2018 Oct; 639():217-227. PubMed ID: 29787905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source.
    Chrastný V; Vaněk A; Teper L; Cabala J; Procházka J; Pechar L; Drahota P; Penížek V; Komárek M; Novák M
    Environ Monit Assess; 2012 Apr; 184(4):2517-36. PubMed ID: 21674226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.
    Lee JY; Choi JC; Lee KK
    Environ Geochem Health; 2005 Sep; 27(3):237-57. PubMed ID: 16059780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial distribution and risk assessment of heavy metals inside and outside a typical lead-zinc mine in southeastern China.
    Zhu X; Cao L; Liang Y
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):26265-26275. PubMed ID: 31286370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening Level Assessment of Metal Concentrations in Streambed Sediments and Floodplain Soils within the Grand Lake Watershed in Northeastern Oklahoma, USA.
    Garvin EM; Bridge CF; Garvin MS
    Arch Environ Contam Toxicol; 2017 Apr; 72(3):349-363. PubMed ID: 28229194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of mine waste on airborne respirable particulates in northeastern Oklahoma, United States.
    Zota AR; Willis R; Jim R; Norris GA; Shine JP; Duvall RM; Schaider LA; Spengler JD
    J Air Waste Manag Assoc; 2009 Nov; 59(11):1347-57. PubMed ID: 19947116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining areas in Guangdong Province, China.
    Yin H; Tan N; Liu C; Wang J; Liang X; Qu M; Feng X; Qiu G; Tan W; Liu F
    Chemosphere; 2016 Oct; 161():181-189. PubMed ID: 27427775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea.
    Jung MC; Thornton I
    Sci Total Environ; 1997 May; 198(2):105-21. PubMed ID: 9167264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metals retention in a net alkaline mine drainage impacted stream due to the colonization of the North American Beaver (Castor canadensis).
    Shepherd NL; Nairn RW
    Sci Total Environ; 2020 Aug; 731():139203. PubMed ID: 32413663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China.
    Liu G; Wang J; Zhang E; Hou J; Liu X
    Environ Sci Pollut Res Int; 2016 May; 23(9):8709-20. PubMed ID: 26801928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Association of Heavy Metals with Iron Oxides in the Aggregates of Naturally Enriched Soil.
    Shen Q; Demisie W; Zhang S; Zhang M
    Bull Environ Contam Toxicol; 2020 Jan; 104(1):144-148. PubMed ID: 31707530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain.
    Rodríguez L; Ruiz E; Alonso-Azcárate J; Rincón J
    J Environ Manage; 2009 Feb; 90(2):1106-16. PubMed ID: 18572301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metals in agricultural produce associated with acid-mine drainage in Mount Morgan (Queensland, Australia).
    Vicente-Beckett VA; McCauley GJ; Duivenvoorden LJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(7):561-70. PubMed ID: 26979303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport, fate and speciation of heavy metals (Pb, Zn, Cu, Cd) in mine drainage: geochemical modeling and anodic stripping voltammetric analysis.
    Yun ST; Jung HB; So CS
    Environ Technol; 2001 Jul; 22(7):749-70. PubMed ID: 11506201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long term metal release and acid generation in abandoned mine wastes containing metal-sulphides.
    Nieva NE; Borgnino L; García MG
    Environ Pollut; 2018 Nov; 242(Pt A):264-276. PubMed ID: 29990934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure.
    Alomary AA; Belhadj S
    Environ Monit Assess; 2007 Dec; 135(1-3):265-80. PubMed ID: 17342430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.