BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 24868242)

  • 1. Identification of alternative topological domains in chromatin.
    Filippova D; Patro R; Duggal G; Kingsford C
    Algorithms Mol Biol; 2014; 9():14. PubMed ID: 24868242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rich Chromatin Structure Prediction from Hi-C Data.
    Malik L; Patro R
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1448-1458. PubMed ID: 29994683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological domains in mammalian genomes identified by analysis of chromatin interactions.
    Dixon JR; Selvaraj S; Yue F; Kim A; Li Y; Shen Y; Hu M; Liu JS; Ren B
    Nature; 2012 Apr; 485(7398):376-80. PubMed ID: 22495300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulator function and topological domain border strength scale with architectural protein occupancy.
    Van Bortle K; Nichols MH; Li L; Ong CT; Takenaka N; Qin ZS; Corces VG
    Genome Biol; 2014 Jun; 15(6):R82. PubMed ID: 24981874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MSTD: an efficient method for detecting multi-scale topological domains from symmetric and asymmetric 3D genomic maps.
    Ye Y; Gao L; Zhang S
    Nucleic Acids Res; 2019 Jun; 47(11):e65. PubMed ID: 30941409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical chromatin organization detected by TADpole.
    Soler-Vila P; Cuscó P; Farabella I; Di Stefano M; Marti-Renom MA
    Nucleic Acids Res; 2020 Apr; 48(7):e39. PubMed ID: 32083658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MSTD for Detecting Topological Domains from 3D Genomic Maps.
    Ye Y; Gao L; Zhang S
    Methods Mol Biol; 2020; 2117():79-92. PubMed ID: 31960373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of constitutive CTCF/cohesin loci: a possible role in establishing topological domains in mammalian genomes.
    Li Y; Huang W; Niu L; Umbach DM; Covo S; Li L
    BMC Genomics; 2013 Aug; 14():553. PubMed ID: 23945083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions.
    Yan KK; Lou S; Gerstein M
    PLoS Comput Biol; 2017 Jul; 13(7):e1005647. PubMed ID: 28742097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topologically associating domains are stable units of replication-timing regulation.
    Pope BD; Ryba T; Dileep V; Yue F; Wu W; Denas O; Vera DL; Wang Y; Hansen RS; Canfield TK; Thurman RE; Cheng Y; Gülsoy G; Dennis JH; Snyder MP; Stamatoyannopoulos JA; Taylor J; Hardison RC; Kahveci T; Ren B; Gilbert DM
    Nature; 2014 Nov; 515(7527):402-5. PubMed ID: 25409831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling genome-wide topological associating domains in mouse embryonic stem cells.
    Zhan Y; Giorgetti L; Tiana G
    Chromosome Res; 2017 Mar; 25(1):5-14. PubMed ID: 28108933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative modeling reveals the principles of multi-scale chromatin boundary formation in human nuclear organization.
    Moore BL; Aitken S; Semple CA
    Genome Biol; 2015 May; 16(1):110. PubMed ID: 26013771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains.
    Cuddapah S; Jothi R; Schones DE; Roh TY; Cui K; Zhao K
    Genome Res; 2009 Jan; 19(1):24-32. PubMed ID: 19056695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells.
    Steiner LA; Schulz V; Makismova Y; Lezon-Geyda K; Gallagher PG
    PLoS One; 2016; 11(5):e0155378. PubMed ID: 27219007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes.
    Zhan Y; Mariani L; Barozzi I; Schulz EG; Blüthgen N; Stadler M; Tiana G; Giorgetti L
    Genome Res; 2017 Mar; 27(3):479-490. PubMed ID: 28057745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization.
    Ea V; Baudement MO; Lesne A; Forné T
    Genes (Basel); 2015 Jul; 6(3):734-50. PubMed ID: 26226004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological structure analysis of chromatin interaction networks.
    Viksna J; Melkus G; Celms E; Čerāns K; Freivalds K; Kikusts P; Lace L; Opmanis M; Rituma D; Rucevskis P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):618. PubMed ID: 31881819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical block matrices as efficient representations of chromosome topologies and their application for 3C data integration.
    Shavit Y; Walker BJ; Lio' P
    Bioinformatics; 2016 Apr; 32(8):1121-9. PubMed ID: 26685310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SBTD: A Novel Method for Detecting Topological Associated Domains from Hi-C Data.
    Long C; Liao Y; Li Y; Yan J; Zhu M; Li M
    Interdiscip Sci; 2021 Dec; 13(4):638-651. PubMed ID: 34160760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution in situ hybridization analysis on the chromosomal interval 61C7-61C8 of Drosophila melanogaster reveals interbands as open chromatin domains.
    Zielke T; Glotov A; Saumweber H
    Chromosoma; 2016 Jun; 125(3):423-35. PubMed ID: 26520107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.