These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24868469)

  • 1. Parametric Optimization of Cultural Conditions for Carboxymethyl Cellulase Production Using Pretreated Rice Straw by Bacillus sp. 313SI under Stationary and Shaking Conditions.
    Goyal V; Mittal A; Bhuwal AK; Singh G; Yadav A; Aggarwal NK
    Biotechnol Res Int; 2014; 2014():651839. PubMed ID: 24868469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological studies on carboxymethyl cellulase formation by Aspergillus terreus DSM 826.
    Abdel-Fatah OM; Hassan MM; Elshafei AM; Haroun BM; Atta HM; Othman AM
    Braz J Microbiol; 2012 Jan; 43(1):1-11. PubMed ID: 24031798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic saccharification of pretreated rice straw by cellulases from Aspergillus niger BK01.
    Aggarwal NK; Goyal V; Saini A; Yadav A; Gupta R
    3 Biotech; 2017 Jul; 7(3):158. PubMed ID: 28623490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of cellulase production by
    Anu ; Kumar S; Kumar A; Kumar V; Singh B
    Prep Biochem Biotechnol; 2021; 51(7):697-704. PubMed ID: 33302792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass.
    Potprommanee L; Wang XQ; Han YJ; Nyobe D; Peng YP; Huang Q; Liu JY; Liao YL; Chang KL
    PLoS One; 2017; 12(4):e0175004. PubMed ID: 28406925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing soil amendment for salt stress using pretreated rice straw and cellulolytic fungi.
    Ma YN; Mongkolthanaruk W; Riddech N
    Sci Rep; 2024 Jun; 14(1):13903. PubMed ID: 38886460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulase production under solid-state fermentation by
    Boondaeng A; Keabpimai J; Trakunjae C; Vaithanomsat P; Srichola P; Niyomvong N
    Heliyon; 2024 Mar; 10(5):e26601. PubMed ID: 38434300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digestibility of
    Teeravivattanakit T; Baramee S; Ketbot P; Waeonukul R; Pason P; Tachaapaikoon C; Ratanakhanokchai K; Phitsuwan P
    Prep Biochem Biotechnol; 2022; 52(5):508-513. PubMed ID: 34455937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost-effective cellulase production using Parthenium hysterophorus biomass as an unconventional lignocellulosic substrate.
    Saini A; Aggarwal NK; Yadav A
    3 Biotech; 2017 May; 7(1):12. PubMed ID: 28391474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adding value to rice straw waste for high-level xylanase production using a new isolate of Bacillus altitudinis RS3025.
    Ketsakhon P; Thammasittirong A; Thammasittirong SN
    Folia Microbiol (Praha); 2023 Feb; 68(1):87-99. PubMed ID: 35945409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxymethyl cellulase production optimization from Glutamicibacter arilaitensis strain ALA4 and its application in lignocellulosic waste biomass saccharification.
    Aarti C; Khusro A; Agastian P
    Prep Biochem Biotechnol; 2018; 48(9):853-866. PubMed ID: 30303451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of cellulases by
    Vieira MM; Kadoguchi E; Segato F; da Silva SS; Chandel AK
    Prep Biochem Biotechnol; 2021; 51(2):153-163. PubMed ID: 32757876
    [No Abstract]   [Full Text] [Related]  

  • 13. Study on regulation of growth and biosynthesis of cellulolytic enzymes from newly isolated Aspergillus fumigatus ABK9.
    Das A; Paul T; Halder SK; Maity C; Das Mohapatra PK; Pati BR; Mondal KC
    Pol J Microbiol; 2013; 62(1):31-43. PubMed ID: 23829075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and application of an efficient cellulose-degrading microbial consortium and carboxymethyl cellulase production optimization.
    Zhang G; Dong Y
    Front Microbiol; 2022; 13():957444. PubMed ID: 35910619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation.
    El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA
    BMC Biotechnol; 2015 May; 15():37. PubMed ID: 26018951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-concentrated substrate enzymatic hydrolysis of pretreated rice straw with glycerol and aluminum chloride at low cellulase loadings.
    Tang S; Dong Q; Fang Z; Cong WJ; Miao ZD
    Bioresour Technol; 2019 Dec; 294():122164. PubMed ID: 31563115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of cellulase by
    Zhao CH; Liu X; Zhan T; He J
    RSC Adv; 2018 Oct; 8(63):36233-36238. PubMed ID: 35558464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue.
    Kumar AK; Parikh BS; Pravakar M
    Environ Sci Pollut Res Int; 2016 May; 23(10):9265-75. PubMed ID: 26032452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation.
    Deswal D; Khasa YP; Kuhad RC
    Bioresour Technol; 2011 May; 102(10):6065-72. PubMed ID: 21470856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrogenerated alkaline hydrogen peroxide for rice straw pretreatment to enhance enzymatic hydrolysis.
    Deng D; Duan XX; Lu JJ; Qin YH; Wang CW
    Bioresour Technol; 2019 Nov; 292():122077. PubMed ID: 31477347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.