These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 24869488)
21. Asymmetric cell division-dominant neutral drift model for normal intestinal stem cell homeostasis. Sei Y; Feng J; Chow CC; Wank SA Am J Physiol Gastrointest Liver Physiol; 2019 Jan; 316(1):G64-G74. PubMed ID: 30359083 [TBL] [Abstract][Full Text] [Related]
22. Multi-scale modeling of APC and [Formula: see text]-catenin regulation in the human colonic crypt. Emerick B; Schleiniger G; Boman BM J Math Biol; 2018 Jun; 76(7):1797-1830. PubMed ID: 29302705 [TBL] [Abstract][Full Text] [Related]
23. Use of l-pNIPAM hydrogel as a 3D-scaffold for intestinal crypts and stem cell tissue engineering. Dosh RH; Jordan-Mahy N; Sammon C; Le Maitre CL Biomater Sci; 2019 Sep; 7(10):4310-4324. PubMed ID: 31410428 [TBL] [Abstract][Full Text] [Related]
24. CoGNaC: A Chaste Plugin for the Multiscale Simulation of Gene Regulatory Networks Driving the Spatial Dynamics of Tissues and Cancer. Rubinacci S; Graudenzi A; Caravagna G; Mauri G; Osborne J; Pitt-Francis J; Antoniotti M Cancer Inform; 2015; 14(Suppl 4):53-65. PubMed ID: 26380549 [TBL] [Abstract][Full Text] [Related]
25. A calibrated agent-based computer model of stochastic cell dynamics in normal human colon crypts useful for in silico experiments. Bravo R; Axelrod DE Theor Biol Med Model; 2013 Nov; 10():66. PubMed ID: 24245614 [TBL] [Abstract][Full Text] [Related]
26. Measuring stem cell dynamics in the human colon--where there's a wiggle, there's a way. Leedham SJ J Pathol; 2014 Nov; 234(3):292-5. PubMed ID: 25112223 [TBL] [Abstract][Full Text] [Related]
27. Tales from the crypt: new insights into intestinal stem cells. Gehart H; Clevers H Nat Rev Gastroenterol Hepatol; 2019 Jan; 16(1):19-34. PubMed ID: 30429586 [TBL] [Abstract][Full Text] [Related]
28. Clonality and life cycles of intestinal crypts explained by a state dependent stochastic model of epithelial stem cell organization. Loeffler M; Bratke T; Paulus U; Li YQ; Potten CS J Theor Biol; 1997 May; 186(1):41-54. PubMed ID: 9176636 [TBL] [Abstract][Full Text] [Related]
29. Critical role of microbiota within cecal crypts on the regenerative capacity of the intestinal epithelium following surgical stress. Zaborin A; Krezalek M; Hyoju S; Defazio JR; Setia N; Belogortseva N; Bindokas VP; Guo Q; Zaborina O; Alverdy JC Am J Physiol Gastrointest Liver Physiol; 2017 Feb; 312(2):G112-G122. PubMed ID: 27979825 [TBL] [Abstract][Full Text] [Related]
30. Interkinetic nuclear migration and basal tethering facilitates post-mitotic daughter separation in intestinal organoids. Carroll TD; Langlands AJ; Osborne JM; Newton IP; Appleton PL; Näthke I J Cell Sci; 2017 Nov; 130(22):3862-3877. PubMed ID: 28982714 [TBL] [Abstract][Full Text] [Related]
31. MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms. Joosten SPJ; Zeilstra J; van Andel H; Mijnals RC; Zaunbrecher J; Duivenvoorden AAM; van de Wetering M; Clevers H; Spaargaren M; Pals ST Gastroenterology; 2017 Oct; 153(4):1040-1053.e4. PubMed ID: 28716720 [TBL] [Abstract][Full Text] [Related]
32. An enteroendocrine cell-based model for a quiescent intestinal stem cell niche. Radford IR; Lobachevsky PN Cell Prolif; 2006 Oct; 39(5):403-14. PubMed ID: 16987141 [TBL] [Abstract][Full Text] [Related]
33. Canonical Wnt signals combined with suppressed TGFβ/BMP pathways promote renewal of the native human colonic epithelium. Reynolds A; Wharton N; Parris A; Mitchell E; Sobolewski A; Kam C; Bigwood L; El Hadi A; Münsterberg A; Lewis M; Speakman C; Stebbings W; Wharton R; Sargen K; Tighe R; Jamieson C; Hernon J; Kapur S; Oue N; Yasui W; Williams MR Gut; 2014 Apr; 63(4):610-21. PubMed ID: 23831735 [TBL] [Abstract][Full Text] [Related]
34. Tales from the crypt: intestinal niche signals in tissue renewal, plasticity and cancer. Spit M; Koo BK; Maurice MM Open Biol; 2018 Sep; 8(9):. PubMed ID: 30209039 [TBL] [Abstract][Full Text] [Related]
35. Isolated crypts form spheres prior to full intestinal differentiation when grown as xenografts: an in vivo model for the study of intestinal differentiation and crypt neogenesis, and for the abnormal crypt architecture of juvenile polyposis coli. Del Buono R; Lee CY; Hawkey CJ; Wright NA J Pathol; 2005 Aug; 206(4):395-401. PubMed ID: 15965908 [TBL] [Abstract][Full Text] [Related]
36. The evolution of metapopulation dynamics and the number of stem cells in intestinal crypts and other tissue structures in multicellular bodies. Birtwell D; Luebeck G; Maley CC Evol Appl; 2020 Aug; 13(7):1771-1783. PubMed ID: 32821281 [TBL] [Abstract][Full Text] [Related]
37. Intestinal stem cells promote crypt fission during postnatal growth of the small intestine. Dudhwala ZM; Hammond PD; Howarth GS; Cummins AG BMJ Open Gastroenterol; 2020 Jun; 7(1):. PubMed ID: 32586946 [TBL] [Abstract][Full Text] [Related]
38. Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Hermiston ML; Wong MH; Gordon JI Genes Dev; 1996 Apr; 10(8):985-96. PubMed ID: 8608945 [TBL] [Abstract][Full Text] [Related]
39. A test of the stochastic theory of stem cell differentiation. Bjerknes M Biophys J; 1986 Jun; 49(6):1223-7. PubMed ID: 3719076 [TBL] [Abstract][Full Text] [Related]
40. Wnt-reporter expression pattern in the mouse intestine during homeostasis. Davies PS; Dismuke AD; Powell AE; Carroll KH; Wong MH BMC Gastroenterol; 2008 Dec; 8():57. PubMed ID: 19055726 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]