These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 24869902)
1. Carbon nanotube electron field emitters for x-ray imaging of human breast cancer. Gidcumb E; Gao B; Shan J; Inscoe C; Lu J; Zhou O Nanotechnology; 2014 Jun; 25(24):245704. PubMed ID: 24869902 [TBL] [Abstract][Full Text] [Related]
2. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array. Qian X; Tucker A; Gidcumb E; Shan J; Yang G; Calderon-Colon X; Sultana S; Lu J; Zhou O; Spronk D; Sprenger F; Zhang Y; Kennedy D; Farbizio T; Jing Z Med Phys; 2012 Apr; 39(4):2090-9. PubMed ID: 22482630 [TBL] [Abstract][Full Text] [Related]
3. Design and characterization of a spatially distributed multibeam field emission x-ray source for stationary digital breast tomosynthesis. Qian X; Rajaram R; Calderon-Colon X; Yang G; Phan T; Lalush DS; Lu J; Zhou O Med Phys; 2009 Oct; 36(10):4389-99. PubMed ID: 19928069 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of reconstruction algorithms for a stationary digital breast tomosynthesis system using a carbon nanotube X-ray source array. Hu Z; Chen Z; Zhou C; Hong X; Chen J; Zhang Q; Jiang C; Ge Y; Yang Y; Liu X; Zheng H; Li Z; Liang D J Xray Sci Technol; 2020; 28(6):1157-1169. PubMed ID: 32925159 [TBL] [Abstract][Full Text] [Related]
5. Comparison of a stationary digital breast tomosynthesis system to magnified 2D mammography using breast tissue specimens. Tucker AW; Calliste J; Gidcumb EM; Wu J; Kuzmiak CM; Hyun N; Zeng D; Lu J; Zhou O; Lee YZ Acad Radiol; 2014 Dec; 21(12):1547-52. PubMed ID: 25172412 [TBL] [Abstract][Full Text] [Related]
6. Second generation stationary digital breast tomosynthesis system with faster scan time and wider angular span. Calliste J; Wu G; Laganis PE; Spronk D; Jafari H; Olson K; Gao B; Lee YZ; Zhou O; Lu J Med Phys; 2017 Sep; 44(9):4482-4495. PubMed ID: 28569999 [TBL] [Abstract][Full Text] [Related]
7. TU-E-217BCD-11: Evaluating the Performance of a Stationary Digital Breast Tomosynthesis System. Tucker A; Gidcumb E; Shan J; Qian X; Sprenger F; Spronk D; Zhang Y; Kennedy D; Farbizio T; Ruth C; Jing Z; Lu J; Zhou O Med Phys; 2012 Jun; 39(6Part24):3916. PubMed ID: 28518705 [TBL] [Abstract][Full Text] [Related]
8. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study. Shan J; Tucker AW; Lee YZ; Heath MD; Wang X; Foos DH; Lu J; Zhou O Phys Med Biol; 2015 Jan; 60(1):81-100. PubMed ID: 25478786 [TBL] [Abstract][Full Text] [Related]
9. A multiple x-ray-source array (MXA) system with a planar two-dimensional source distribution for digital breast tomosynthesis. Sisniega A; Hernandez AM; Shakeri SA; Morris EA; Boone JM; Siewerdsen JH; Schwoebel PR Med Phys; 2024 Dec; 51(12):8709-8724. PubMed ID: 39382847 [TBL] [Abstract][Full Text] [Related]
10. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner. Patel T; Peppard H; Williams MB Med Phys; 2016 Apr; 43(4):1720. PubMed ID: 27036570 [TBL] [Abstract][Full Text] [Related]
11. Characterization and preliminary imaging evaluation of a clinical prototype stationary intraoral tomosynthesis system. Inscoe CR; Platin E; Mauriello SM; Broome A; Mol A; Gaalaas LR; Regan Anderson MW; Puett C; Lu J; Zhou O Med Phys; 2018 Nov; 45(11):5172-5185. PubMed ID: 30259988 [TBL] [Abstract][Full Text] [Related]
12. Design and feasibility studies of a stationary digital breast tomosynthesis system. Yang G; Qian X; Phan T; Sprenger F; Sultana S; Calderon-Colon X; Kearse B; Spronk D; Lu J; Zhou O Nucl Instrum Methods Phys Res A; 2011 Aug; 648(Suppl 1):S220-S223. PubMed ID: 21808428 [TBL] [Abstract][Full Text] [Related]
13. On a new multi-source X-ray tube concept for minimizing imaging time in digital breast tomosynthesis. Behling R Phys Med; 2021 Aug; 88():20-22. PubMed ID: 34167003 [TBL] [Abstract][Full Text] [Related]
14. An update on carbon nanotube-enabled X-ray sources for biomedical imaging. Puett C; Inscoe C; Hartman A; Calliste J; Franceschi DK; Lu J; Zhou O; Lee YZ Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Jan; 10(1):. PubMed ID: 28398001 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of carbon nanotube x-ray source array for stationary head computed tomography. Spronk D; Luo Y; Inscoe CR; Lee YZ; Lu J; Zhou O Med Phys; 2021 Mar; 48(3):1089-1099. PubMed ID: 33382470 [TBL] [Abstract][Full Text] [Related]
16. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging. Hu YH; Zhao W Med Phys; 2014 Nov; 41(11):111904. PubMed ID: 25370637 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the Detection Rate of Simulated Microcalcifications in Full-Field Digital Mammography, Digital Breast Tomosynthesis, and Synthetically Reconstructed 2-Dimensional Images Performed With 2 Different Digital X-ray Mammography Systems. Peters S; Hellmich M; Stork A; Kemper J; Grinstein O; PĆ¼sken M; Stahlhut L; Kinner S; Maintz D; Krug KB Invest Radiol; 2017 Apr; 52(4):206-215. PubMed ID: 27861206 [TBL] [Abstract][Full Text] [Related]
18. Clinical performance metrics of 3D digital breast tomosynthesis compared with 2D digital mammography for breast cancer screening in community practice. Greenberg JS; Javitt MC; Katzen J; Michael S; Holland AE AJR Am J Roentgenol; 2014 Sep; 203(3):687-93. PubMed ID: 24918774 [TBL] [Abstract][Full Text] [Related]
19. Geometric calibration of a stationary digital breast tomosynthesis system based on distributed carbon nanotube X-ray source arrays. Jiang C; Zhang N; Gao J; Hu Z PLoS One; 2017; 12(11):e0188367. PubMed ID: 29186172 [TBL] [Abstract][Full Text] [Related]