These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24869982)

  • 1. Carbohydrate-protein interactions that drive processive polysaccharide translocation in enzymes revealed from a computational study of cellobiohydrolase processivity.
    Knott BC; Crowley MF; Himmel ME; Ståhlberg J; Beckham GT
    J Am Chem Soc; 2014 Jun; 136(24):8810-9. PubMed ID: 24869982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases.
    Taylor CB; Payne CM; Himmel ME; Crowley MF; McCabe C; Beckham GT
    J Phys Chem B; 2013 May; 117(17):4924-33. PubMed ID: 23534900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-Linked glycans are an important component of the processive machinery of cellobiohydrolases.
    Gusakov AV; Dotsenko AS; Rozhkova AM; Sinitsyn AP
    Biochimie; 2017 Jan; 132():102-108. PubMed ID: 27856189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and structural insights into a thermostable cellobiohydrolase from Myceliophthora thermophila.
    Kadowaki MAS; Higasi P; de Godoy MO; Prade RA; Polikarpov I
    FEBS J; 2018 Feb; 285(3):559-579. PubMed ID: 29222836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase.
    Beckham GT; Matthews JF; Bomble YJ; Bu L; Adney WS; Himmel ME; Nimlos MR; Crowley MF
    J Phys Chem B; 2010 Jan; 114(3):1447-53. PubMed ID: 20050714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular modeling suggests induced fit of Family I carbohydrate-binding modules with a broken-chain cellulose surface.
    Nimlos MR; Matthews JF; Crowley MF; Walker RC; Chukkapalli G; Brady JW; Adney WS; Cleary JM; Zhong L; Himmel ME
    Protein Eng Des Sel; 2007 Apr; 20(4):179-87. PubMed ID: 17430975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose.
    Payne CM; Resch MG; Chen L; Crowley MF; Himmel ME; Taylor LE; Sandgren M; Ståhlberg J; Stals I; Tan Z; Beckham GT
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14646-51. PubMed ID: 23959893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysine Mutation of the Claw-Arm-Like Loop Accelerates Catalysis by Cellobiohydrolases.
    Zong Z; Li Q; Hong Z; Fu H; Cai W; Chipot C; Jiang H; Zhang D; Chen S; Shao X
    J Am Chem Soc; 2019 Sep; 141(36):14451-14459. PubMed ID: 31432675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular details from computational reaction dynamics for the cellobiohydrolase I glycosylation reaction.
    Barnett CB; Wilkinson KA; Naidoo KJ
    J Am Chem Soc; 2011 Dec; 133(48):19474-82. PubMed ID: 22007863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds.
    Bu L; Beckham GT; Crowley MF; Chang CH; Matthews JF; Bomble YJ; Adney WS; Himmel ME; Nimlos MR
    J Phys Chem B; 2009 Aug; 113(31):10994-1002. PubMed ID: 19594145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequencing, biochemical characterization, crystal structure and molecular dynamics of cellobiohydrolase Cel7A from Geotrichum candidum 3C.
    Borisova AS; Eneyskaya EV; Bobrov KS; Jana S; Logachev A; Polev DE; Lapidus AL; Ibatullin FM; Saleem U; Sandgren M; Payne CM; Kulminskaya AA; Ståhlberg J
    FEBS J; 2015 Dec; 282(23):4515-37. PubMed ID: 26367132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies.
    Knott BC; Haddad Momeni M; Crowley MF; Mackenzie LF; Götz AW; Sandgren M; Withers SG; Ståhlberg J; Beckham GT
    J Am Chem Soc; 2014 Jan; 136(1):321-9. PubMed ID: 24341799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alanine substitution in cellobiohydrolase provides new insights into substrate threading.
    Mitsuzawa S; Fukuura M; Shinkawa S; Kimura K; Furuta T
    Sci Rep; 2017 Nov; 7(1):16320. PubMed ID: 29176588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of a bacterial cellobiohydrolase: the catalytic core of the Thermobifida fusca family GH6 cellobiohydrolase Cel6B.
    Sandgren M; Wu M; Karkehabadi S; Mitchinson C; Kelemen BR; Larenas EA; Ståhlberg J; Hansson H
    J Mol Biol; 2013 Feb; 425(3):622-35. PubMed ID: 23220193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases.
    Beckham GT; Ståhlberg J; Knott BC; Himmel ME; Crowley MF; Sandgren M; Sørlie M; Payne CM
    Curr Opin Biotechnol; 2014 Jun; 27():96-106. PubMed ID: 24863902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and Structural Characterizations of Two Dictyostelium Cellobiohydrolases from the Amoebozoa Kingdom Reveal a High Level of Conservation between Distant Phylogenetic Trees of Life.
    Hobdey SE; Knott BC; Haddad Momeni M; Taylor LE; Borisova AS; Podkaminer KK; VanderWall TA; Himmel ME; Decker SR; Beckham GT; Ståhlberg J
    Appl Environ Microbiol; 2016 Jun; 82(11):3395-409. PubMed ID: 27037126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare.
    Momeni MH; Payne CM; Hansson H; Mikkelsen NE; Svedberg J; Engström Å; Sandgren M; Beckham GT; Ståhlberg J
    J Biol Chem; 2013 Feb; 288(8):5861-72. PubMed ID: 23303184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose.
    Nakamura A; Watanabe H; Ishida T; Uchihashi T; Wada M; Ando T; Igarashi K; Samejima M
    J Am Chem Soc; 2014 Mar; 136(12):4584-92. PubMed ID: 24571226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance.
    Kern M; McGeehan JE; Streeter SD; Martin RN; Besser K; Elias L; Eborall W; Malyon GP; Payne CM; Himmel ME; Schnorr K; Beckham GT; Cragg SM; Bruce NC; McQueen-Mason SJ
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10189-94. PubMed ID: 23733951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated docking to explore subsite binding by glycoside hydrolase family 6 cellobiohydrolases and endoglucanases.
    Mertz B; Hill AD; Mulakala C; Reilly PJ
    Biopolymers; 2007 Nov; 87(4):249-60. PubMed ID: 17724729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.