These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 24870296)
1. A macrocyclic chelator with unprecedented Th⁴⁺ affinity. Pham TA; Xu J; Raymond KN J Am Chem Soc; 2014 Jun; 136(25):9106-15. PubMed ID: 24870296 [TBL] [Abstract][Full Text] [Related]
2. A simple, one-step procedure for the formation of chiral metallamacrocycles. Campbell K; Johnson CA; McDonald R; Ferguson MJ; Haley MM; Tykwinski RR Angew Chem Int Ed Engl; 2004 Nov; 43(44):5967-71. PubMed ID: 15547907 [No Abstract] [Full Text] [Related]
3. Solution Thermodynamics and Kinetics of Metal Complexation with a Hydroxypyridinone Chelator Designed for Thorium-227 Targeted Alpha Therapy. Deblonde GJ; Lohrey TD; Booth CH; Carter KP; Parker BF; Larsen Å; Smeets R; Ryan OB; Cuthbertson AS; Abergel RJ Inorg Chem; 2018 Nov; 57(22):14337-14346. PubMed ID: 30372069 [TBL] [Abstract][Full Text] [Related]
4. Solution thermodynamic stability of complexes formed with the octadentate hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO): a critical feature for efficient chelation of lanthanide(IV) and actinide(IV) ions. Deblonde GJ; Sturzbecher-Hoehne M; Abergel RJ Inorg Chem; 2013 Aug; 52(15):8805-11. PubMed ID: 23855806 [TBL] [Abstract][Full Text] [Related]
5. Characterization of 2,3-dihydroxyterephthalamides as M(IV) chelators. Gramer CJ; Raymond KN Inorg Chem; 2004 Oct; 43(20):6397-402. PubMed ID: 15446889 [TBL] [Abstract][Full Text] [Related]
7. H2CHXdedpa and H4CHXoctapa-chiral acyclic chelating ligands for (67/68)Ga and (111)In radiopharmaceuticals. Ramogida CF; Cawthray JF; Boros E; Ferreira CL; Patrick BO; Adam MJ; Orvig C Inorg Chem; 2015 Feb; 54(4):2017-31. PubMed ID: 25621728 [TBL] [Abstract][Full Text] [Related]
8. Selective chelation of Cd(II) and Pb(II) versus Ca(II) and Zn(II) by using octadentate ligands containing pyridinecarboxylate and pyridyl pendants. Ferreirós-Martínez R; Esteban-Gómez D; Platas-Iglesias C; de Blas A; Rodríguez-Blas T Inorg Chem; 2009 Dec; 48(23):10976-87. PubMed ID: 19877597 [TBL] [Abstract][Full Text] [Related]
9. An efficient chelator for complexation of thorium-227. Ramdahl T; Bonge-Hansen HT; Ryan OB; Larsen S; Herstad G; Sandberg M; Bjerke RM; Grant D; Brevik EM; Cuthbertson AS Bioorg Med Chem Lett; 2016 Sep; 26(17):4318-21. PubMed ID: 27476138 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the conformational behavior and stability of the SAP and TSAP isomers of lanthanide(III) NB-DOTA-type chelates. Tircso G; Webber BC; Kucera BE; Young VG; Woods M Inorg Chem; 2011 Sep; 50(17):7966-79. PubMed ID: 21819053 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, characterization, and x-ray crystal structures of cyclam derivatives. 8. Thermodynamic and kinetic appraisal of lead(II) chelation by octadentate carbamoyl-armed macrocycles. Cuenot F; Meyer M; Espinosa E; Guilard R Inorg Chem; 2005 Oct; 44(22):7895-910. PubMed ID: 16241139 [TBL] [Abstract][Full Text] [Related]
12. Two macrocyclic pentaaza compounds containing pyridine evaluated as novel chelating agents in copper(II) and nickel(II) overload. Fernandes AS; Cabral MF; Costa J; Castro M; Delgado R; Drew MG; Félix V J Inorg Biochem; 2011 Mar; 105(3):410-9. PubMed ID: 21421127 [TBL] [Abstract][Full Text] [Related]
13. Gallium(III) complexes of DOTA and DOTA-monoamide: kinetic and thermodynamic studies. Kubícek V; Havlícková J; Kotek J; Tircsó G; Hermann P; Tóth E; Lukes I Inorg Chem; 2010 Dec; 49(23):10960-9. PubMed ID: 21047078 [TBL] [Abstract][Full Text] [Related]
14. Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. Boswell CA; Sun X; Niu W; Weisman GR; Wong EH; Rheingold AL; Anderson CJ J Med Chem; 2004 Mar; 47(6):1465-74. PubMed ID: 14998334 [TBL] [Abstract][Full Text] [Related]
15. Aggregation in amphiphilic macrocycle-substituted Gd(3+) DOTA-type chelates is affected by the regiochemistry of substitution. Webber BC; Cassino C; Botta M; Woods M Inorg Chem; 2015 Mar; 54(5):2085-7. PubMed ID: 25692481 [TBL] [Abstract][Full Text] [Related]
16. Unexpected aggregation of neutral, xylene-cored dinuclear GdIII chelates in aqueous solution. Costa J; Balogh E; Turcry V; Tripier R; Le Baccon M; Chuburu F; Handel H; Helm L; Tóth E; Merbach AE Chemistry; 2006 Sep; 12(26):6841-51. PubMed ID: 16770815 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of 1,4,7-triphenyl-1,4,7-triphosphacyclononane: the first metal-free synthesis of a [9]-aneP(3)R(3) ring. Lowry DJ; Helm ML Inorg Chem; 2010 Jun; 49(11):4732-4. PubMed ID: 20441207 [TBL] [Abstract][Full Text] [Related]
18. DOTA analogues with a phosphinate-iminodiacetate pendant arm: modification of the complex formation rate with a strongly chelating pendant. Procházková S; Kubíček V; Böhmová Z; Holá K; Kotek J; Hermann P Dalton Trans; 2017 Aug; 46(31):10484-10497. PubMed ID: 28758669 [TBL] [Abstract][Full Text] [Related]
19. Complexes of greatly enhanced thermodynamic stability and metal ion size-based selectivity, formed by the highly preorganized non-macrocyclic ligand 1,10-phenanthroline-2,9-dicarboxylic acid. A thermodynamic and crystallographic study. Melton DL; Vanderveer DG; Hancock RD Inorg Chem; 2006 Nov; 45(23):9306-14. PubMed ID: 17083230 [TBL] [Abstract][Full Text] [Related]
20. Tetradentate bis-phosphine ligands (P(2)N(2) and P(2)S(2)) and their Rh(III), Ni(II) and (105)Rh complexes: X-ray crystal structures of trans-[RhCl(2)(L2)]PF(6), [Ni(L2)](PF(6))(2) and μ-O(2)SO(2)-[Ni(L5)](2)(PF(6))(2). Cagnolini A; Ballard B; Engelbrecht HP; Rold TL; Barnes C; Cutler C; Hoffman TJ; Kannan R; Katti K; Jurisson SS Nucl Med Biol; 2011 Jan; 38(1):63-76. PubMed ID: 21220130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]