These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Mass-spectrometry-based draft of the Arabidopsis proteome. Mergner J; Frejno M; List M; Papacek M; Chen X; Chaudhary A; Samaras P; Richter S; Shikata H; Messerer M; Lang D; Altmann S; Cyprys P; Zolg DP; Mathieson T; Bantscheff M; Hazarika RR; Schmidt T; Dawid C; Dunkel A; Hofmann T; Sprunck S; Falter-Braun P; Johannes F; Mayer KFX; Jürgens G; Wilhelm M; Baumbach J; Grill E; Schneitz K; Schwechheimer C; Kuster B Nature; 2020 Mar; 579(7799):409-414. PubMed ID: 32188942 [TBL] [Abstract][Full Text] [Related]
4. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes. Zhang Y; Zhang Y; Adachi J; Olsen JV; Shi R; de Souza G; Pasini E; Foster LJ; Macek B; Zougman A; Kumar C; Wisniewski JR; Jun W; Mann M Nucleic Acids Res; 2007 Jan; 35(Database issue):D771-9. PubMed ID: 17090601 [TBL] [Abstract][Full Text] [Related]
5. pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes in Arabidopsis thaliana. Baerenfaller K; Hirsch-Hoffmann M; Svozil J; Hull R; Russenberger D; Bischof S; Lu Q; Gruissem W; Baginsky S Integr Biol (Camb); 2011 Mar; 3(3):225-37. PubMed ID: 21264403 [TBL] [Abstract][Full Text] [Related]
7. First insight into the human liver proteome from PROTEOME(SKY)-LIVER(Hu) 1.0, a publicly available database. Chinese Human Liver Proteome Profiling Consortium J Proteome Res; 2010 Jan; 9(1):79-94. PubMed ID: 19653699 [TBL] [Abstract][Full Text] [Related]
8. RNA- and antibody-based profiling of the human proteome with focus on chromosome 19. Stadler C; Fagerberg L; Sivertsson Å; Oksvold P; Zwahlen M; Hallström BM; Lundberg E; Uhlén M J Proteome Res; 2014 Apr; 13(4):2019-27. PubMed ID: 24579871 [TBL] [Abstract][Full Text] [Related]
9. Sys-BodyFluid: a systematical database for human body fluid proteome research. Li SJ; Peng M; Li H; Liu BS; Wang C; Wu JR; Li YX; Zeng R Nucleic Acids Res; 2009 Jan; 37(Database issue):D907-12. PubMed ID: 18978022 [TBL] [Abstract][Full Text] [Related]
10. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database. Komatsu S; Wang X; Yin X; Nanjo Y; Ohyanagi H; Sakata K J Proteomics; 2017 Jun; 163():52-66. PubMed ID: 28499913 [TBL] [Abstract][Full Text] [Related]
11. Analyzing the first drafts of the human proteome. Ezkurdia I; Vázquez J; Valencia A; Tress M J Proteome Res; 2014 Aug; 13(8):3854-5. PubMed ID: 25014353 [TBL] [Abstract][Full Text] [Related]
15. Approaches for systematic proteome exploration. Falk R; Ramström M; Ståhl S; Hober S Biomol Eng; 2007 Jun; 24(2):155-68. PubMed ID: 17376740 [TBL] [Abstract][Full Text] [Related]
16. Mass spectrometry-based proteomic analysis of biological stains identifies body fluids specific markers. Zhang J; Yan M; Ji A; Sun Q; Ying W Forensic Sci Int; 2024 Apr; 357():112008. PubMed ID: 38522320 [TBL] [Abstract][Full Text] [Related]
17. ProteomicsDB. Schmidt T; Samaras P; Frejno M; Gessulat S; Barnert M; Kienegger H; Krcmar H; Schlegl J; Ehrlich HC; Aiche S; Kuster B; Wilhelm M Nucleic Acids Res; 2018 Jan; 46(D1):D1271-D1281. PubMed ID: 29106664 [TBL] [Abstract][Full Text] [Related]
18. Pharmaceutical relevant cytokine receptors: lessons from the first drafts of the human proteome. Garbers C; Rose-John S J Proteome Res; 2015 Feb; 14(2):1330-2. PubMed ID: 25437751 [TBL] [Abstract][Full Text] [Related]
19. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. Manes NP; Nita-Lazar A J Proteomics; 2018 Oct; 189():75-90. PubMed ID: 29452276 [TBL] [Abstract][Full Text] [Related]
20. High-accuracy proteome maps of human body fluids. Schmidt A; Aebersold R Genome Biol; 2006; 7(11):242. PubMed ID: 17140426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]