These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2487089)

  • 21. Prolonged rhodopsin phosphorylation in light-induced retinal degeneration in rat models.
    Ishikawa F; Ohguro H; Ohguro I; Yamazaki H; Mamiya K; Metoki T; Ito T; Yokoi Y; Nakazawa M
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5204-11. PubMed ID: 17122104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Taurine depletion leads to loss of rat optic nerve axons.
    Lake N; Malik N; De Marte L
    Vision Res; 1988; 28(10):1071-6. PubMed ID: 3257010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retinal morphology in rats treated with a taurine transport antagonist.
    Lake N; Malik N
    Exp Eye Res; 1987 Mar; 44(3):331-46. PubMed ID: 3595755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The protective effect of ascorbic acid in retinal light damage of rats exposed to intermittent light.
    Organisciak DT; Jiang YL; Wang HM; Bicknell I
    Invest Ophthalmol Vis Sci; 1990 Jul; 31(7):1195-202. PubMed ID: 2365553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Vigabatrin Induced Retinal Toxicity is Associated with Photopic Exposure and Taurine Deficiency: An In Vivo Study.
    Tao Y; Yang J; Ma Z; Yan Z; Liu C; Ma J; Wang Y; Yang Z; Huang YF
    Cell Physiol Biochem; 2016; 40(5):831-846. PubMed ID: 27941319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oscillatory potentials and light microscopic changes demonstrate an interaction between zinc and taurine in the developing rat retina.
    Gottschall-Pass KT; Grahn BH; Gorecki DK; Paterson PG
    J Nutr; 1997 Jun; 127(6):1206-13. PubMed ID: 9187637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of L-and D-ascorbic acid administration on retinal tissue levels and light damage in rats.
    Organisciak DT; Bicknell IR; Darrow RM
    Curr Eye Res; 1992 Mar; 11(3):231-41. PubMed ID: 1587146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats.
    Sugawara T; Sieving PA; Bush RA
    Exp Eye Res; 2000 May; 70(5):693-705. PubMed ID: 10870528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light-induced damage in the retina: differential effects of dimethylthiourea on photoreceptor survival, apoptosis and DNA oxidation.
    Organisciak DT; Darrow RA; Barsalou L; Darrow RM; Lininger LA
    Photochem Photobiol; 1999 Aug; 70(2):261-8. PubMed ID: 10461466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Age-related changes in retinal sensitivity, rhodopsin content and rod outer segment length in hooded rats following low-level lead exposure during development.
    Fox DA; Rubinstein SD
    Exp Eye Res; 1989 Feb; 48(2):237-49. PubMed ID: 2924811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retinal light-damage in albino rats: lysosomal enzymes, rhodopsin, and age.
    Penn JS; Baker BN; Howard AG; Williams TP
    Exp Eye Res; 1985 Sep; 41(3):275-84. PubMed ID: 4065250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate.
    Organisciak DT; Darrow RM; Jiang YL; Blanks JC
    Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2243-57. PubMed ID: 8843911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Retinal dysfunction in cancer-associated retinopathy is improved by Ca(2+) antagonist administration and dark adaptation.
    Ohguro H; Ogawa K; Maeda T; Maruyama I; Maeda A; Takano Y; Nakazawa M
    Invest Ophthalmol Vis Sci; 2001 Oct; 42(11):2589-95. PubMed ID: 11581204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Taurine biosynthesis in frog retina: effects of light and dark adaptations.
    Nishimura C; Ida S; Kuriyama K
    J Neurosci Res; 1983; 9(1):59-67. PubMed ID: 6601194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light exposure can reduce selectively or abolish the C-wave of the albino rat electroretinogram.
    Graves AL; Green DG; Fisher LJ
    Invest Ophthalmol Vis Sci; 1985 Mar; 26(3):388-93. PubMed ID: 3972521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein energy malnutrition and taurine supplementation: effects on vitamin A nutritional status and electroretinogram of young rats.
    Bankson DD; Russell RM
    J Nutr; 1988 Jan; 118(1):23-32. PubMed ID: 3121814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Taurine deficiency is a cause of vigabatrin-induced retinal phototoxicity.
    Jammoul F; Wang Q; Nabbout R; Coriat C; Duboc A; Simonutti M; Dubus E; Craft CM; Ye W; Collins SD; Dulac O; Chiron C; Sahel JA; Picaud S
    Ann Neurol; 2009 Jan; 65(1):98-107. PubMed ID: 19194884
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age-related retinal degeneration in animal models of aging: possible involvement of taurine deficiency and oxidative stress.
    Militante J; Lombardini JB
    Neurochem Res; 2004 Jan; 29(1):151-60. PubMed ID: 14992274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The retina of c-fos-/- mice: electrophysiologic, morphologic and biochemical aspects.
    Kueng-Hitz N; Grimm C; Lansel N; Hafezi F; He L; Fox DA; Remé CE; Niemeyer G; Wenzel A
    Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):909-16. PubMed ID: 10711713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.