These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Central regulation of photosensitive membrane turnover in the lateral eye of Limulus, II: octopamine acts via adenylate cyclase/cAMP-dependent protein kinase to prime the retina for transient rhabdom shedding. Runyon SL; Washicosky KJ; Brenneman RJ; Kelly JR; Khadilkar RV; Heacock KF; McCormick SM; Williams KE; Jinks RN Vis Neurosci; 2004; 21(5):749-63. PubMed ID: 15688551 [TBL] [Abstract][Full Text] [Related]
9. Visual efference neuromodulates retinal timing: in vivo roles of octopamine, substance P, circadian phase, and efferent activation in Limulus. Bolbecker AR; Lim-Kessler CC; Li J; Swan A; Lewis A; Fleets J; Wasserman GS J Neurophysiol; 2009 Aug; 102(2):1132-8. PubMed ID: 19535477 [TBL] [Abstract][Full Text] [Related]
10. Identification and function of octopamine and tyramine conjugates in the Limulus visual system. Battelle BA; Edwards SC; Kass L; Maresch HM; Pierce SK; Wishart AC J Neurochem; 1988 Oct; 51(4):1240-51. PubMed ID: 2901464 [TBL] [Abstract][Full Text] [Related]
11. Light-regulated proteins in Limulus ventral photoreceptor cells. Edwards SC; Wishart AC; Wiebe EM; Battelle BA Vis Neurosci; 1989 Aug; 3(2):95-105. PubMed ID: 2487101 [TBL] [Abstract][Full Text] [Related]
12. Categorical and prolonged potentials are evoked when brief, intermediate-intensity flashes stimulate horseshoe crab lateral eye photoreceptors during octopamine neuromodulation. Lim CC; Wasserman GS Biol Signals Recept; 2001; 10(6):399-415. PubMed ID: 11721095 [TBL] [Abstract][Full Text] [Related]
13. Autoradiographic localization of newly synthesized octopamine to retinal efferents in the Limulus visual system. Evans JA; Chamberlain SC; Battelle BA J Comp Neurol; 1983 Oct; 219(4):369-83. PubMed ID: 6417196 [TBL] [Abstract][Full Text] [Related]
15. Regulation of arrestin mRNA levels in Limulus lateral eye: separate and combined influences of circadian efferent input and light. Battelle BA; Williams CD; Schremser-Berlin JL; Cacciatore C Vis Neurosci; 2000; 17(2):217-27. PubMed ID: 10824676 [TBL] [Abstract][Full Text] [Related]
16. Opsin1-2, G(q)α and arrestin levels at Limulus rhabdoms are controlled by diurnal light and a circadian clock. Battelle BA; Kempler KE; Parker AK; Gaddie CD J Exp Biol; 2013 May; 216(Pt 10):1837-49. PubMed ID: 23393287 [TBL] [Abstract][Full Text] [Related]
17. Photoreceptor cells dissociated from the compound lateral eye of the horseshoe crab, Limulus polyphemus, II: Function. Hanna WJ; Johnson EC; Chaves D; Renninger GH Vis Neurosci; 1993; 10(4):609-20. PubMed ID: 7687862 [TBL] [Abstract][Full Text] [Related]
18. Adapting bump model for ventral photoreceptors of Limulus. Wong F; Knight BW; Dodge FA J Gen Physiol; 1982 Jun; 79(6):1089-113. PubMed ID: 7108487 [TBL] [Abstract][Full Text] [Related]
19. Neuropeptide modulation of photosensitivity. II. Physiological and anatomical effects of substance P on the lateral eye of Limulus. Mancillas JR; Selverston AI J Neurosci; 1984 Mar; 4(3):847-59. PubMed ID: 6200585 [TBL] [Abstract][Full Text] [Related]
20. Circadian efferent input to Limulus eyes: anatomy, circuitry, and impact. Battelle BA Microsc Res Tech; 2002 Aug; 58(4):345-55. PubMed ID: 12214301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]