These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 24871305)

  • 21. Inverted core-shell potential energy landscape of icosahedral clusters in deeply undercooled metallic liquids and glasses and its effect on the glass forming ability of bcc and fcc metals.
    Xu D; Wang Z; Chang TY; Chen F
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32619208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions.
    Wang Q; Liu CT; Yang Y; Liu JB; Dong YD; Lu J
    Sci Rep; 2014 Apr; 4():4648. PubMed ID: 24721927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A structural model for metallic glasses.
    Miracle DB
    Nat Mater; 2004 Oct; 3(10):697-702. PubMed ID: 15378050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical study on the composition location of the best glass formers in Cu-Zr amorphous alloys.
    Wang D; Zhao SJ; Liu LM
    J Phys Chem A; 2015 Jan; 119(4):806-14. PubMed ID: 25547898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HRTEM analysis of nanocrystallization during uniaxial compression of a bulk metallic glass at room temperature.
    Deng YF; He LL; Zhang QS; Zhang HF; Ye HQ
    Ultramicroscopy; 2004 Jan; 98(2-4):201-8. PubMed ID: 15046800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic structure of biodegradable Mg-based bulk metallic glass.
    Christie JK
    Phys Chem Chem Phys; 2015 May; 17(19):12894-8. PubMed ID: 25906985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core.
    Mednikov EG; Jewell MC; Dahl LF
    J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electromagnetic vibration process for producing bulk metallic glasses.
    Tamura T; Amiya K; Rachmat RS; Mizutani Y; Miwa K
    Nat Mater; 2005 Apr; 4(4):289-92. PubMed ID: 15750599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuum modeling of bulk metallic glasses and composites.
    Abdeljawad F; Haataja M
    Phys Rev Lett; 2010 Sep; 105(12):125503. PubMed ID: 20867655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Designing High Entropy Bulk Metallic Glass (HE-BMG) by Similar Element Substitution/Addition.
    Ding H; Luan H; Bu H; Xu H; Yao K
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal genes in a marginal glass-forming system of Ni
    Wen TQ; Tang L; Sun Y; Ho KM; Wang CZ; Wang N
    Phys Chem Chem Phys; 2017 Nov; 19(45):30429-30438. PubMed ID: 29104995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast surface dynamics enabled cold joining of metallic glasses.
    Ma J; Yang C; Liu X; Shang B; He Q; Li F; Wang T; Wei D; Liang X; Wu X; Wang Y; Gong F; Guan P; Wang W; Yang Y
    Sci Adv; 2019 Nov; 5(11):eaax7256. PubMed ID: 31803833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variable resolution fluctuation electron microscopy on Cu-Zr metallic glass using a wide range of coherent STEM probe size.
    Hwang J; Voyles PM
    Microsc Microanal; 2011 Feb; 17(1):67-74. PubMed ID: 21122191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuned critical avalanche scaling in bulk metallic glasses.
    Antonaglia J; Xie X; Schwarz G; Wraith M; Qiao J; Zhang Y; Liaw PK; Uhl JT; Dahmen KA
    Sci Rep; 2014 Mar; 4():4382. PubMed ID: 24632786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elastic moduli inheritance and the weakest link in bulk metallic glasses.
    Ma D; Stoica AD; Wang XL; Lu ZP; Clausen B; Brown DW
    Phys Rev Lett; 2012 Feb; 108(8):085501. PubMed ID: 22463541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Applicability of Pre-Plastic Deformation Method for Improving Mechanical Properties of Bulk Metallic Glasses.
    Zhou C; Zhang H; Yuan X; Song K; Liu D
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deformation Behavior of Bulk Metallic Glasses and High Entropy Alloys under Complex Stress Fields: A Review.
    Chen S; Wang J; Xia L; Wu Y
    Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Viscous Flow of Supercooled Liquid in a Zr-Based Bulk Metallic Glass Synthesized by Additive Manufacturing.
    Kosiba K; Deng L; Scudino S
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liquid-solid joining of bulk metallic glasses.
    Huang Y; Xue P; Guo S; Wu Y; Cheng X; Fan H; Ning Z; Cao F; Xing D; Sun J; Liaw PK
    Sci Rep; 2016 Jul; 6():30674. PubMed ID: 27471073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.