BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24871341)

  • 1. Simplification of complex physiologically based pharmacokinetic models of monoclonal antibodies.
    Elmeliegy M; Lowe P; Krzyzanski W
    AAPS J; 2014 Jul; 16(4):810-42. PubMed ID: 24871341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human.
    Shah DK; Betts AM
    J Pharmacokinet Pharmacodyn; 2012 Feb; 39(1):67-86. PubMed ID: 22143261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survey of monoclonal antibody disposition in man utilizing a minimal physiologically-based pharmacokinetic model.
    Cao Y; Jusko WJ
    J Pharmacokinet Pharmacodyn; 2014 Dec; 41(6):571-80. PubMed ID: 25146360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a catenary PBPK model for predicting the in vivo disposition of mAbs engineered for high-affinity binding to FcRn.
    Chen Y; Balthasar JP
    AAPS J; 2012 Dec; 14(4):850-9. PubMed ID: 22956476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monoclonal antibody disposition: a simplified PBPK model and its implications for the derivation and interpretation of classical compartment models.
    Fronton L; Pilari S; Huisinga W
    J Pharmacokinet Pharmacodyn; 2014 Apr; 41(2):87-107. PubMed ID: 24493102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies.
    Cao Y; Balthasar JP; Jusko WJ
    J Pharmacokinet Pharmacodyn; 2013 Oct; 40(5):597-607. PubMed ID: 23996115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of minimal physiologically-based pharmacokinetic models.
    Cao Y; Jusko WJ
    J Pharmacokinet Pharmacodyn; 2012 Dec; 39(6):711-23. PubMed ID: 23179857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating target-mediated drug disposition in a minimal physiologically-based pharmacokinetic model for monoclonal antibodies.
    Cao Y; Jusko WJ
    J Pharmacokinet Pharmacodyn; 2014 Aug; 41(4):375-87. PubMed ID: 25077917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the Monoclonal Antibody Disposition after Subcutaneous Administration using a Minimal Physiologically based Pharmacokinetic Model.
    Varkhede N; Forrest ML
    J Pharm Pharm Sci; 2018; 21(1s):130s-148s. PubMed ID: 30011390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scale-up of a physiologically-based pharmacokinetic model to predict the disposition of monoclonal antibodies in monkeys.
    Glassman PM; Chen Y; Balthasar JP
    J Pharmacokinet Pharmacodyn; 2015 Oct; 42(5):527-40. PubMed ID: 26364301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting monoclonal antibody pharmacokinetics following subcutaneous administration via whole-body physiologically-based modeling.
    Hu S; D'Argenio DZ
    J Pharmacokinet Pharmacodyn; 2020 Oct; 47(5):385-409. PubMed ID: 32500362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A minimal physiologically based pharmacokinetic model to investigate FcRn-mediated monoclonal antibody salvage: Effects of K
    Maas BM; Cao Y
    MAbs; 2018; 10(8):1322-1331. PubMed ID: 30130450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of monoclonal antibody pharmacokinetics in humans using a minimal physiologically based model.
    Li L; Gardner I; Dostalek M; Jamei M
    AAPS J; 2014 Sep; 16(5):1097-109. PubMed ID: 25004823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologically based pharmacokinetic (PBPK) model that describes enhanced FcRn-dependent distribution of monoclonal antibodies (mAbs) by pI-engineering in mice.
    Naoi S; Yamane M; Nemoto T; Kato M; Saito R; Tachibana T
    Drug Metab Pharmacokinet; 2023 Dec; 53():100506. PubMed ID: 38029470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A translational platform PBPK model for antibody disposition in the brain.
    Chang HY; Wu S; Meno-Tetang G; Shah DK
    J Pharmacokinet Pharmacodyn; 2019 Aug; 46(4):319-338. PubMed ID: 31115858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interstitial IgG antibody pharmacokinetics assessed by combined in vivo- and physiologically-based pharmacokinetic modelling approaches.
    Eigenmann MJ; Karlsen TV; Krippendorff BF; Tenstad O; Fronton L; Otteneder MB; Wiig H
    J Physiol; 2017 Dec; 595(24):7311-7330. PubMed ID: 28960303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice.
    Garg A; Balthasar JP
    J Pharmacokinet Pharmacodyn; 2007 Oct; 34(5):687-709. PubMed ID: 17636457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn).
    Ferl GZ; Wu AM; DiStefano JJ
    Ann Biomed Eng; 2005 Nov; 33(11):1640-52. PubMed ID: 16341929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies.
    Dostalek M; Gardner I; Gurbaxani BM; Rose RH; Chetty M
    Clin Pharmacokinet; 2013 Feb; 52(2):83-124. PubMed ID: 23299465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: A comparison between human, cynomolgus monkey and hFcRn Tg32 transgenic mouse using a population-modeling approach.
    Betts A; Keunecke A; van Steeg TJ; van der Graaf PH; Avery LB; Jones H; Berkhout J
    MAbs; 2018 Jul; 10(5):751-764. PubMed ID: 29634430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.