BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24871387)

  • 1. Surfactant-assisted direct electron transfer between multi-copper oxidases and carbon nanotube-based porous electrodes.
    Ogawa Y; Yoshino S; Miyake T; Nishizawa M
    Phys Chem Chem Phys; 2014 Jul; 16(26):13059-62. PubMed ID: 24871387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes.
    Zhang X; Shi W; Zhu J; Kharistal DJ; Zhao W; Lalia BS; Hng HH; Yan Q
    ACS Nano; 2011 Mar; 5(3):2013-9. PubMed ID: 21332174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper.
    Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W
    ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical transport measurements of the side-contacts and embedded-end-contacts of platinum leads on the same single-walled carbon nanotube.
    Song X; Han X; Fu Q; Xu J; Wang N; Yu DP
    Nanotechnology; 2009 May; 20(19):195202. PubMed ID: 19420633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode.
    Tominaga M; Nomura S; Taniguchi I
    Biosens Bioelectron; 2009 Jan; 24(5):1184-8. PubMed ID: 18707862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of nanopores with embedded annular electrodes and transverse carbon nanotube electrodes.
    Jiang Z; Mihovilovic M; Chan J; Stein D
    J Phys Condens Matter; 2010 Nov; 22(45):454114. PubMed ID: 21339601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comprehensive Review of Gas Sensors Using Carbon Materials.
    Kim MI; Lee YS
    J Nanosci Nanotechnol; 2016 May; 16(5):4310-9. PubMed ID: 27483751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of Cu2+ using poly(2-aminothiazole)/ multi-walled carbon nanotubes composite film modified glassy carbon electrodes.
    Zhao H; Wu Z; Xue Y; Cao Q; He Y; Li X; Yuan Z
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3381-4. PubMed ID: 21776713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroscopic Carbon Nanotube-based 3D Monoliths.
    Du R; Zhao Q; Zhang N; Zhang J
    Small; 2015 Jul; 11(27):3263-89. PubMed ID: 25740457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube coating improves neuronal recordings.
    Keefer EW; Botterman BR; Romero MI; Rossi AF; Gross GW
    Nat Nanotechnol; 2008 Jul; 3(7):434-9. PubMed ID: 18654569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotubes: application to dopamine detection.
    Baldrich E; Gómez R; Gabriel G; Muñoz FX
    Biosens Bioelectron; 2011 Jan; 26(5):1876-82. PubMed ID: 20378329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode.
    Jiang LC; Zhang WD
    Biosens Bioelectron; 2010 Feb; 25(6):1402-7. PubMed ID: 19942424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electron transfer in nanostructured sol-gel electrodes containing bilirubin oxidase.
    Lim J; Cirigliano N; Wang J; Dunn B
    Phys Chem Chem Phys; 2007 Apr; 9(15):1809-14. PubMed ID: 17415492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-activated surfactants for dispersion of carbon nanotubes.
    Cousins BG; Das AK; Sharma R; Li Y; McNamara JP; Hillier IH; Kinloch IA; Ulijn RV
    Small; 2009 Mar; 5(5):587-90. PubMed ID: 19242950
    [No Abstract]   [Full Text] [Related]  

  • 16. Carbon nanotube-polymer based nanocomposite as electrode material for the detection of paraoxon.
    Jha N; Ramaprabhu S
    J Nanosci Nanotechnol; 2010 Apr; 10(4):2798-802. PubMed ID: 20355504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoelectric properties of porous multi-walled carbon nanotube/polyaniline core/shell nanocomposites.
    Zhang K; Davis M; Qiu J; Hope-Weeks L; Wang S
    Nanotechnology; 2012 Sep; 23(38):385701. PubMed ID: 22947620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips.
    Sun G; Huang Y; Zheng L; Zhan Z; Zhang Y; Pang JH; Wu T; Chen P
    Nanoscale; 2011 Nov; 3(11):4854-8. PubMed ID: 21997308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High electrocatalytic activity of tethered multicopper oxidase-carbon nanotube conjugates.
    Ramasamy RP; Luckarift HR; Ivnitski DM; Atanassov PB; Johnson GR
    Chem Commun (Camb); 2010 Sep; 46(33):6045-7. PubMed ID: 20571702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bulk piezoresistive characteristics of carbon nanotube composites for strain sensing of structures.
    Kang I; Joung KY; Choi GR; Schulz MJ; Choi YS; Hwang SH; Ko HS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3736-9. PubMed ID: 18047048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.