These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24871987)

  • 1. Arterial mechanical motion estimation based on a semi-rigid body deformation approach.
    Guzman P; Hamarneh G; Ros R; Ros E
    Sensors (Basel); 2014 May; 14(6):9429-50. PubMed ID: 24871987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-D arterial wall motion imaging using ultrafast ultrasound and transverse oscillations.
    Salles S; Chee AJ; Garcia D; Yu AC; Vray D; Liebgott H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1047-58. PubMed ID: 26067039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound-based radial and longitudinal strain estimation of the carotid artery: a feasibility study.
    Larsson M; Kremer F; Claus P; Kuznetsova T; Brodin LA; D'hooge J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2244-51. PubMed ID: 21989888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results.
    Shih CC; Lai TY; Huang CC
    Ultrasonics; 2016 Aug; 70():64-74. PubMed ID: 27135187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive vascular elastography: theoretical framework.
    Maurice RL; Ohayon J; Frétigny Y; Bertrand M; Soulez G; Cloutier G
    IEEE Trans Med Imaging; 2004 Feb; 23(2):164-80. PubMed ID: 14964562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital Photoplethysmography for Assessment of Arterial Stiffness: Repeatability and Comparison with Applanation Tonometry.
    von Wowern E; Östling G; Nilsson PM; Olofsson P
    PLoS One; 2015; 10(8):e0135659. PubMed ID: 26291079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ARTSENS - an image-free system for noninvasive evaluation of arterial compliance.
    Joseph J; Thomas EA; Sivaprakasam M; Suresh S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4054-7. PubMed ID: 24110622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic elastography and its dependence on arterial flow volume.
    Nagaoka R; Kobayashi K; Yoshizawa S; Umemura S; Saijo Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6309-12. PubMed ID: 26737735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approaching artery rigid dynamics in IVUS.
    Hernandez-Sabate A; Gil D; Fernandez-Nofrerias E; Radeva P; Marti E
    IEEE Trans Med Imaging; 2009 Nov; 28(11):1670-80. PubMed ID: 19369152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of nonlinear mechanical properties of vascular tissues via elastography.
    Karimi R; Zhu T; Bouma BE; Mofrad MR
    Cardiovasc Eng; 2008 Dec; 8(4):191-202. PubMed ID: 19048372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of complex arterial elastic modulus from ring resonance excited by ultrasound radiation force.
    Zhang X; Greenleaf JF
    Ultrasonics; 2006 Dec; 44 Suppl 1():e169-72. PubMed ID: 16860364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging.
    Al Mukaddim R; Meshram NH; Varghese T
    Phys Med Biol; 2020 Mar; 65(6):065008. PubMed ID: 32028272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Angular Compounding With Affine-Model-Based Optical Flow for Improvement of Motion Estimation.
    Liu Z; He Q; Luo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Apr; 66(4):701-716. PubMed ID: 30703018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytic signal phase-based myocardial motion estimation in tagged MRI sequences by a bilinear model and motion compensation.
    Wang L; Basarab A; Girard PR; Croisille P; Clarysse P; Delachartre P
    Med Image Anal; 2015 Aug; 24(1):149-162. PubMed ID: 26176412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion estimation using the monogenic signal applied to ultrasound elastography.
    Maltaverne T; Delachartre P; Basarab A
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():33-6. PubMed ID: 21095638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance comparison of rigid and affine models for motion estimation using ultrasound radio-frequency signals.
    Pan X; Liu K; Shao J; Gao J; Huang L; Bai J; Luo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Nov; 62(11):1928-43. PubMed ID: 26559623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive, energy-based assessment of patient-specific material properties of arterial tissue.
    Smoljkić M; Vander Sloten J; Segers P; Famaey N
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1045-56. PubMed ID: 25634601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultrasound elastography method to determine the local stiffness of arteries with guided circumferential waves.
    Li GY; He Q; Xu G; Jia L; Luo J; Cao Y
    J Biomech; 2017 Jan; 51():97-104. PubMed ID: 27989313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of the transverse strain tensor in the arterial wall using IVUS image registration.
    Liang Y; Zhu H; Friedman MH
    Ultrasound Med Biol; 2008 Nov; 34(11):1832-45. PubMed ID: 18620800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.