These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 24872153)
1. Evaluation of two distinct cryoprotectants for cryopreservation of human red blood cell concentrates. Korsak J; Goller A; Rzeszotarska A; Pleskacz K Cryo Letters; 2014; 35(1):15-21. PubMed ID: 24872153 [TBL] [Abstract][Full Text] [Related]
2. A comparative study of the effects of glycerol and hydroxyethyl starch in canine red blood cell cryopreservation. Kim H; Tanaka S; Une S; Nakaichi M; Sumida S; Taura Y J Vet Med Sci; 2004 Dec; 66(12):1543-7. PubMed ID: 15644605 [TBL] [Abstract][Full Text] [Related]
3. Synergistic effects of liposomes, trehalose, and hydroxyethyl starch for cryopreservation of human erythrocytes. Stoll C; Holovati JL; Acker JP; Wolkers WF Biotechnol Prog; 2012; 28(2):364-71. PubMed ID: 22275294 [TBL] [Abstract][Full Text] [Related]
4. Cryopreservation of feline red blood cells in liquid nitrogen using glycerol and hydroxyethyl starch. Hon M; Thomovsky EJ; Brooks AC; Johnson PA J Feline Med Surg; 2020 Apr; 22(4):366-375. PubMed ID: 31232153 [TBL] [Abstract][Full Text] [Related]
5. Influence of the cryoprotective agents glycerol and hydroxyethyl starch on red blood cell ATP and 2,3-diphosphoglyceric acid levels. Rittmeyer IC; Nydegger UE Vox Sang; 1992; 62(3):141-5. PubMed ID: 1376947 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the effects of glycerol, dimethyl sulfoxide, and hydroxyethyl starch solutions for cryopreservation of avian red blood cells. Graham JE; Meola DM; Kini NR; Hoffman AM Am J Vet Res; 2015 Jun; 76(6):487-93. PubMed ID: 26000595 [TBL] [Abstract][Full Text] [Related]
7. Application of phosphoenolpyruvate into canine red blood cell cryopreservation with hydroxyethyl starch. Kim H; Itamoto K; Une S; Nakaichi M; Taura Y; Sumida S Cryo Letters; 2005; 26(1):1-6. PubMed ID: 15772707 [TBL] [Abstract][Full Text] [Related]
8. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Briard JG; Poisson JS; Turner TR; Capicciotti CJ; Acker JP; Ben RN Sci Rep; 2016 Mar; 6():23619. PubMed ID: 27021850 [TBL] [Abstract][Full Text] [Related]
9. Altered processing of thawed red cells to improve the in vitro quality during postthaw storage at 4 degrees C. Lagerberg JW; Truijens-de Lange R; de Korte D; Verhoeven AJ Transfusion; 2007 Dec; 47(12):2242-9. PubMed ID: 17714415 [TBL] [Abstract][Full Text] [Related]
10. Intracellular sugars improve survival of human red blood cells cryopreserved at -80 degrees C in the presence of polyvinyl pyrrolidone and human serum albumin. Quan G; Zhang L; Guo Y; Liu M; Wang J; Wang Y; Dong B; Liu A; Zhang J; Han Y Cryo Letters; 2007; 28(2):95-108. PubMed ID: 17522728 [TBL] [Abstract][Full Text] [Related]
11. [Cryopreservation of human erythrocytes with hydroxyethyl starch (HES)--Part 2: Analysis of survival]. Sputtek A; Bacher C; Langer R; Kron W; Henrich HA; Rau G Infusionsther Transfusionsmed; 1992 Dec; 19(6):276-82. PubMed ID: 1284211 [TBL] [Abstract][Full Text] [Related]
12. An experiment with glycerol-frozen red blood cells stored at -80 degrees C for up to 37 years. Valeri CR; Ragno G; Pivacek LE; Cassidy GP; Srey R; Hansson-Wicher M; Leavy ME Vox Sang; 2000; 79(3):168-74. PubMed ID: 11111236 [TBL] [Abstract][Full Text] [Related]
13. Osmotic tolerance limits of red blood cells from umbilical cord blood. Zhurova M; Lusianti RE; Higgins AZ; Acker JP Cryobiology; 2014 Aug; 69(1):48-54. PubMed ID: 24836371 [TBL] [Abstract][Full Text] [Related]
14. Stability after thawing of RBCs frozen with the high- and low-glycerol method. Lelkens CC; Noorman F; Koning JG; Truijens-de Lange R; Stekkinger PS; Bakker JC; Lagerberg JW; Brand A; Verhoeven AJ Transfusion; 2003 Feb; 43(2):157-64. PubMed ID: 12559010 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of red blood cells stored at -80 degrees C in excess of 10 years. Lecak J; Scott K; Young C; Hannon J; Acker JP Transfusion; 2004 Sep; 44(9):1306-13. PubMed ID: 15318853 [TBL] [Abstract][Full Text] [Related]
16. Prolonged maintenance of 2,3-diphosphoglycerate acid and adenosine triphosphate in red blood cells during storage. de Korte D; Kleine M; Korsten HG; Verhoeven AJ Transfusion; 2008 Jun; 48(6):1081-9. PubMed ID: 18373504 [TBL] [Abstract][Full Text] [Related]
17. DEVELOPMENT OF A MODEL TO INVESTIGATE RED BLOOD CELL SURFACE CHARACTERISTICS AFTER CRYOPRESERVATION. Gordiyenko OI; Anikieieva MO; Rozanova SL; Kovalenko SY; Kovalenkol IF; Gordiyenko EO Cryo Letters; 2015; 36(3):221-6. PubMed ID: 26510341 [TBL] [Abstract][Full Text] [Related]
18. Osmotic effects of dilution on erythrocytes after freezing and thawing in glycerol-containing buffer. De Loecker R; Goossens W; Van Duppen V; Verwilghen R; De Loecker W Cryobiology; 1993 Jun; 30(3):279-85. PubMed ID: 8370314 [TBL] [Abstract][Full Text] [Related]
19. Automation of the glycerolization of red blood cells with the high-separation bowl in the Haemonetics ACP 215 instrument. Valeri CR; Ragno G; Van Houten P; Rose L; Rose M; Egozy Y; Popovsky MA Transfusion; 2005 Oct; 45(10):1621-7. PubMed ID: 16181213 [TBL] [Abstract][Full Text] [Related]
20. Successful in vivo recovery and extended storage of additive solution (AS)-5 red blood cells after deglycerolization and resuspension in AS-3 for 15 days with an automated closed system. Bandarenko N; Cancelas J; Snyder EL; Hay SN; Rugg N; Corda T; Joines AD; Gormas JF; Pratt GP; Kowalsky R; Rose M; Rose L; Foley J; Popovsky MA Transfusion; 2007 Apr; 47(4):680-6. PubMed ID: 17381627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]