These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 2487248)

  • 1. A long-term in vivo bone strain measurement device.
    Szivek JA; Magee FP
    J Invest Surg; 1989; 2(2):195-206. PubMed ID: 2487248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyapatite-coated strain gauges for long-term in vivo bone strain measurements.
    Maliniak MM; Szivek JA; DeYoung DW; Emmanual J
    J Appl Biomater; 1993; 4(2):143-52. PubMed ID: 10171661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo strain measurements collected using calcium phosphate ceramic-bonded strain gauges.
    Szivek JA; Anderson PL; DeYoung DW
    J Invest Surg; 1997; 10(5):263-73. PubMed ID: 9361990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary development of a hydroxyapatite-backed strain gauge.
    Szivek JA; Gealer RG; Magee FP; Emmanual J
    J Appl Biomater; 1990; 1(3):241-8. PubMed ID: 10171099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo strain analysis of the greyhound femoral diaphysis.
    Szivek JA; Johnson EM; Magee FP
    J Invest Surg; 1992; 5(2):91-108. PubMed ID: 1610745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of factors affecting bonding rate of calcium phosphate ceramic coatings for in vivo strain gauge attachment.
    Szivek JA; Anderson PL; Dishongh TJ; DeYoung DW
    J Biomed Mater Res; 1996; 33(3):121-32. PubMed ID: 8864883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses.
    Engh CA; O'Connor D; Jasty M; McGovern TF; Bobyn JD; Harris WH
    Clin Orthop Relat Res; 1992 Dec; (285):13-29. PubMed ID: 1446429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femoral strain adaptation after total hip replacement: a comparison of cemented and porous ingrowth components in canines.
    Vanderby R; Manley PA; Belloli DM; Kohles SS; Thielke RJ; McBeath AA
    Proc Inst Mech Eng H; 1990; 204(2):97-109. PubMed ID: 2095150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of operative fit and hydroxyapatite coating on the mechanical and biological response to porous implants.
    Dalton JE; Cook SD; Thomas KA; Kay JF
    J Bone Joint Surg Am; 1995 Jan; 77(1):97-110. PubMed ID: 7822360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone.
    Fresvig T; Ludvigsen P; Steen H; Reikerås O
    Med Eng Phys; 2008 Jan; 30(1):104-8. PubMed ID: 17369073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Threaded versus porous-surfaced designs for implant stabilization in bone-endodontic implant model.
    Maniatopoulos C; Pilliar RM; Smith DC
    J Biomed Mater Res; 1986; 20(9):1309-33. PubMed ID: 3782184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone remodeling and in vivo strain analysis of intact and implanted greyhound proximal femora.
    Szivek JA; Johnson EM; Magee FP; Emmanual J; Poser R; Koeneman JB
    J Invest Surg; 1994; 7(3):213-33. PubMed ID: 7918244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiographic and morphologic studies of load-bearing porous-surfaced structured implants.
    Pilliar RM; Cameron HU; Welsh RP; Binnington AG
    Clin Orthop Relat Res; 1981 May; (156):249-57. PubMed ID: 7226660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ESB Research Award 1992. The mechanism of bone remodeling and resorption around press-fitted THA stems.
    Van Rietbergen B; Huiskes R; Weinans H; Sumner DR; Turner TM; Galante JO
    J Biomech; 1993; 26(4-5):369-82. PubMed ID: 8478342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of stem stiffness on femoral bone resorption after canine porous-coated total hip arthroplasty.
    Bobyn JD; Glassman AH; Goto H; Krygier JJ; Miller JE; Brooks CE
    Clin Orthop Relat Res; 1990 Dec; (261):196-213. PubMed ID: 2245546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observations on the effect of movement on bone ingrowth into porous-surfaced implants.
    Pilliar RM; Lee JM; Maniatopoulos C
    Clin Orthop Relat Res; 1986 Jul; (208):108-13. PubMed ID: 3720113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental tests of planar strain theory for predicting bone cross-sectional longitudinal and shear strains.
    Verner KA; Lehner M; Lamas LP; Main RP
    J Exp Biol; 2016 Oct; 219(Pt 19):3082-3090. PubMed ID: 27471276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of bone ingrowth and interface mechanics of a new porous 3D printed biomaterial: an animal study.
    Tanzer M; Chuang PJ; Ngo CG; Song L; TenHuisen KS
    Bone Joint J; 2019 Jun; 101-B(6_Supple_B):62-67. PubMed ID: 31146557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in stiffness of the interface between a cementless porous implant and cancellous bone in vivo in dogs due to varying amounts of implant motion.
    Bragdon CR; Burke D; Lowenstein JD; O'Connor DO; Ramamurti B; Jasty M; Harris WH
    J Arthroplasty; 1996 Dec; 11(8):945-51. PubMed ID: 8986573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The susceptibility of smooth implant surfaces to periimplant fibrosis and migration of polyethylene wear debris.
    Bobyn JD; Jacobs JJ; Tanzer M; Urban RM; Aribindi R; Sumner DR; Turner TM; Brooks CE
    Clin Orthop Relat Res; 1995 Feb; (311):21-39. PubMed ID: 7634577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.