These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 24872533)

  • 1. Axon diameters and conduction velocities in the macaque pyramidal tract.
    Firmin L; Field P; Maier MA; Kraskov A; Kirkwood PA; Nakajima K; Lemon RN; Glickstein M
    J Neurophysiol; 2014 Sep; 112(6):1229-40. PubMed ID: 24872533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of single corticospinal neurons to intracortical stimulation of primary motor and premotor cortex in the anesthetized macaque monkey.
    Maier MA; Kirkwood PA; Brochier T; Lemon RN
    J Neurophysiol; 2013 Jun; 109(12):2982-98. PubMed ID: 23536718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey.
    Edgley SA; Eyre JA; Lemon RN; Miller S
    Brain; 1997 May; 120 ( Pt 5)():839-53. PubMed ID: 9183254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-myelinated axons are rare in the medullary pyramids of the macaque monkey.
    Ralston DD; Milroy AM; Ralston HJ
    Neurosci Lett; 1987 Jan; 73(3):215-9. PubMed ID: 3561862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Corticospinal Discrepancy: Where are all the Slow Pyramidal Tract Neurons?
    Kraskov A; Baker S; Soteropoulos D; Kirkwood P; Lemon R
    Cereb Cortex; 2019 Aug; 29(9):3977-3981. PubMed ID: 30365013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the axonal conduction velocity of pyramidal tract neurons in the aged cat.
    Xi MC; Liu RH; Engelhardt JK; Morales FR; Chase MH
    Neuroscience; 1999; 92(1):219-25. PubMed ID: 10392844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slowly-Conducting Pyramidal Tract Neurons in Macaque and Rat.
    Kraskov A; Soteropoulos DS; Glover IS; Lemon RN; Baker SN
    Cereb Cortex; 2020 May; 30(5):3403-3418. PubMed ID: 32026928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electrophysiological study of the postnatal development of the corticospinal system in the macaque monkey.
    Olivier E; Edgley SA; Armand J; Lemon RN
    J Neurosci; 1997 Jan; 17(1):267-76. PubMed ID: 8987754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conduction velocities of corticospinal axons in the rat studied by recording cortical antidromic responses.
    Mediratta NK; Nicoll JA
    J Physiol; 1983 Mar; 336():545-61. PubMed ID: 6875920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyramidal tract and corticospinal neurons with branching axons to the dorsal column nuclei of the cat.
    Martinez L; Lamas JA; Canedo A
    Neuroscience; 1995 Sep; 68(1):195-206. PubMed ID: 7477925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study.
    Maier MA; Armand J; Kirkwood PA; Yang HW; Davis JN; Lemon RN
    Cereb Cortex; 2002 Mar; 12(3):281-96. PubMed ID: 11839602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey.
    Edgley SA; Eyre JA; Lemon RN; Miller S
    J Physiol; 1990 Jun; 425():301-20. PubMed ID: 2213581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor cortex and pyramidal tract axons responsible for electrically evoked forelimb flexion: refractory periods and conduction velocities.
    Chapman CA; Yeomans JS
    Neuroscience; 1994 Apr; 59(3):699-711. PubMed ID: 8008214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reanalysis of the ventrolateral input in slow and fast pyramidal tract neurons of the cat motor cortex.
    DeschĂȘnes M; Landry P; Clercq M
    Neuroscience; 1982; 7(9):2149-57. PubMed ID: 6292778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical influences on cervical motoneurons in the rat: recordings of synaptic responses from motoneurons and compound action potential from corticospinal axons.
    Babalian A; Liang F; Rouiller EM
    Neurosci Res; 1993 May; 16(4):301-10. PubMed ID: 8394557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraretinal axons of ganglion cells in the Japanese monkey (Macaca fuscata): conduction velocity and diameter distribution.
    Fukuda Y; Watanabe M; Wakakuwa K; Sawai H; Morigiwa K
    Neurosci Res; 1988 Oct; 6(1):53-71. PubMed ID: 3200520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The pyramidal tract. Recent anatomic and physiologic findings].
    Armand J
    Rev Neurol (Paris); 1984; 140(5):309-29. PubMed ID: 6379818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticospinal and corticorubral projections from the supplementary motor area in the monkey.
    Palmer C; Schmidt EM; McIntosh JS
    Brain Res; 1981 Mar; 209(2):305-14. PubMed ID: 7225796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between axonal diameter, soma size, and axonal conduction velocity of HRP-filled, pyramidal tract cells of awake cats.
    Sakai H; Woody CD
    Brain Res; 1988 Sep; 460(1):1-7. PubMed ID: 2464399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A detailed morphometrical analysis of the pyramidal tract of the rat.
    Leenen LP; Meek J; Posthuma PR; Nieuwenhuys R
    Brain Res; 1985 Dec; 359(1-2):65-80. PubMed ID: 4075163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.