BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 24872535)

  • 1. A functional dissociation between language and multiple-demand systems revealed in patterns of BOLD signal fluctuations.
    Blank I; Kanwisher N; Fedorenko E
    J Neurophysiol; 2014 Sep; 112(5):1105-18. PubMed ID: 24872535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust dissociation among the language, multiple demand, and default mode networks: Evidence from inter-region correlations in effect size.
    Mineroff Z; Blank IA; Mahowald K; Fedorenko E
    Neuropsychologia; 2018 Oct; 119():501-511. PubMed ID: 30243926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain-General Brain Regions Do Not Track Linguistic Input as Closely as Language-Selective Regions.
    Blank IA; Fedorenko E
    J Neurosci; 2017 Oct; 37(41):9999-10011. PubMed ID: 28871034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Domain-General Multiple Demand (MD) Network Does Not Support Core Aspects of Language Comprehension: A Large-Scale fMRI Investigation.
    Diachek E; Blank I; Siegelman M; Affourtit J; Fedorenko E
    J Neurosci; 2020 Jun; 40(23):4536-4550. PubMed ID: 32317387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incremental Language Comprehension Difficulty Predicts Activity in the Language Network but Not the Multiple Demand Network.
    Wehbe L; Blank IA; Shain C; Futrell R; Levy R; von der Malsburg T; Smith N; Gibson E; Fedorenko E
    Cereb Cortex; 2021 Jul; 31(9):4006-4023. PubMed ID: 33895807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical systems for local and global integration in discourse comprehension.
    Egidi G; Caramazza A
    Neuroimage; 2013 May; 71():59-74. PubMed ID: 23319042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maternal reading fluency is associated with functional connectivity between the child's future reading network and regions related to executive functions and language processing in preschool-age children.
    Greenwood P; Hutton J; Dudley J; Horowitz-Kraus T
    Brain Cogn; 2019 Apr; 131():87-93. PubMed ID: 30553572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative blood oxygen level dependent signals during speech comprehension.
    Rodriguez Moreno D; Schiff ND; Hirsch J
    Brain Connect; 2015 May; 5(4):232-44. PubMed ID: 25412406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural correlates and network connectivity underlying narrative production and comprehension: a combined fMRI and PET study.
    AbdulSabur NY; Xu Y; Liu S; Chow HM; Baxter M; Carson J; Braun AR
    Cortex; 2014 Aug; 57():107-27. PubMed ID: 24845161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct neural substrates of individual differences in components of reading comprehension in adults with or without dyslexia.
    Ozernov-Palchik O; Centanni TM; Beach SD; May S; Hogan T; Gabrieli J
    Neuroimage; 2021 Feb; 226():117570. PubMed ID: 33221445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehension of computer code relies primarily on domain-general executive brain regions.
    Ivanova AA; Srikant S; Sueoka Y; Kean HH; Dhamala R; O'Reilly UM; Bers MU; Fedorenko E
    Elife; 2020 Dec; 9():. PubMed ID: 33319744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluency-dependent cortical activation associated with speech production and comprehension in second language learners.
    Shimada K; Hirotani M; Yokokawa H; Yoshida H; Makita K; Yamazaki-Murase M; Tanabe HC; Sadato N
    Neuroscience; 2015 Aug; 300():474-92. PubMed ID: 26026679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual differences in sentence comprehension: a functional magnetic resonance imaging investigation of syntactic and lexical processing demands.
    Prat CS; Keller TA; Just MA
    J Cogn Neurosci; 2007 Dec; 19(12):1950-63. PubMed ID: 17892384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses.
    Wehbe L; Murphy B; Talukdar P; Fyshe A; Ramdas A; Mitchell T
    PLoS One; 2014; 9(11):e112575. PubMed ID: 25426840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined eye tracking and fMRI reveals neural basis of linguistic predictions during sentence comprehension.
    Bonhage CE; Mueller JL; Friederici AD; Fiebach CJ
    Cortex; 2015 Jul; 68():33-47. PubMed ID: 26003489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embodied comprehension of stories: interactions between language regions and modality-specific neural systems.
    Chow HM; Mar RA; Xu Y; Liu S; Wagage S; Braun AR
    J Cogn Neurosci; 2014 Feb; 26(2):279-95. PubMed ID: 24047383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Converging Evidence for Differential Specialization and Plasticity of Language Systems.
    Gurunandan K; Arnaez-Telleria J; Carreiras M; Paz-Alonso PM
    J Neurosci; 2020 Dec; 40(50):9715-9724. PubMed ID: 33168623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reading span task performance, linguistic experience, and the processing of unexpected syntactic events.
    Farmer TA; Fine AB; Misyak JB; Christiansen MH
    Q J Exp Psychol (Hove); 2017 Mar; 70(3):413-433. PubMed ID: 26652283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How the brain attunes to sentence processing: Relating behavior, structure, and function.
    Fengler A; Meyer L; Friederici AD
    Neuroimage; 2016 Apr; 129():268-278. PubMed ID: 26777477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Language structure in the brain: A fixation-related fMRI study of syntactic surprisal in reading.
    Henderson JM; Choi W; Lowder MW; Ferreira F
    Neuroimage; 2016 May; 132():293-300. PubMed ID: 26908322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.