These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 2487279)

  • 1. Studies on the distribution of cholesterol, phospholipid, and protein in the human and bovine lens.
    Borchman D; Delamere NA; McCauley LA; Paterson CA
    Lens Eye Toxic Res; 1989; 6(4):703-24. PubMed ID: 2487279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach.
    Su SP; McArthur JD; Andrew Aquilina J
    Exp Eye Res; 2010 Jul; 91(1):97-103. PubMed ID: 20433829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of lipid membranes from clear and cataractous human lenses.
    Borchman D; Lamba OP; Yappert MC
    Exp Eye Res; 1993 Aug; 57(2):199-208. PubMed ID: 8405186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxindolealanine in age-related human cataracts.
    Rousseva LA; Gaillard ER; Paik DC; Merriam JC; Ryzhov V; Garland DL; Dillon JP
    Exp Eye Res; 2007 Dec; 85(6):861-8. PubMed ID: 17935715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholesterol, phospholipid, and protein changes in focal opacities in the human eye lens.
    Duindam JJ; Vrensen GF; Otto C; Greve J
    Invest Ophthalmol Vis Sci; 1998 Jan; 39(1):94-103. PubMed ID: 9430550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of phospholipid-malondialdehyde-adduct in the human lens.
    Borchman D; Yappert MC; Rubini RQ; Paterson CA
    Curr Eye Res; 1989 Sep; 8(9):939-46. PubMed ID: 2791635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.
    Sanderson J; Marcantonio JM; Duncan G
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between lens protein glycation and membrane structure in human cataract.
    Scalbert P; Birlouez-Aragon I
    Exp Eye Res; 1993 Mar; 56(3):335-40. PubMed ID: 8472788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human lens phospholipid changes with age and cataract.
    Huang L; Grami V; Marrero Y; Tang D; Yappert MC; Rasi V; Borchman D
    Invest Ophthalmol Vis Sci; 2005 May; 46(5):1682-9. PubMed ID: 15851569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freezable and non-freezable water content of cataractous human lenses.
    Bettelheim FA; Ali S; White O; Chylack LT
    Invest Ophthalmol Vis Sci; 1986 Jan; 27(1):122-5. PubMed ID: 3941033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitation of high molecular weight protein aggregates in opaque and transparent parts from the same human cataractous lens.
    Kodama T; Wolfe J; Chylack L; Smith J; Takemoto L
    Jpn J Ophthalmol; 1989; 33(1):114-9. PubMed ID: 2733253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free and bound water in normal and cataractous human lenses.
    Heys KR; Friedrich MG; Truscott RJ
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):1991-7. PubMed ID: 18436831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts.
    Yan H; Lou MF; Fernando MR; Harding JJ
    Mol Vis; 2006 Oct; 12():1153-9. PubMed ID: 17093401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of aging and hyperbaric oxygen in vivo on guinea pig lens lipids and nuclear light scatter.
    Borchman D; Giblin FJ; Leverenz VR; Reddy VN; Lin LR; Yappert MC; Tang D; Li L
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3061-73. PubMed ID: 10967065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional and age-dependent differences in the phospholipid composition of human lens membranes.
    Borchman D; Byrdwell WC; Yappert MC
    Invest Ophthalmol Vis Sci; 1994 Oct; 35(11):3938-42. PubMed ID: 7928192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipids of human lens fiber cell membranes.
    Zigman S; Paxhia T; Marinetti G; Girsch S
    Curr Eye Res; 1984 Jul; 3(7):887-96. PubMed ID: 6467965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitation of membrane-associated crystallins from aging and cataractous human lenses.
    Takehana M; Takemoto L
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of cholesterol on the interaction of alpha-crystallin with phospholipids.
    Tang D; Borchman D; Yappert MC; Cenedella RJ
    Exp Eye Res; 1998 May; 66(5):559-67. PubMed ID: 9628803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.