These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 2487279)

  • 21. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract.
    Sweeney MH; Truscott RJ
    Exp Eye Res; 1998 Nov; 67(5):587-95. PubMed ID: 9878221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative analysis of crystallins and lipids from the lens of Antarctic toothfish and cow.
    Kiss AJ; Devries AL; Morgan-Kiss RM
    J Comp Physiol B; 2010 Oct; 180(7):1019-32. PubMed ID: 20490507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase.
    Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I
    Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of cholesterol in the structural order of lens membrane lipids.
    Borchman D; Cenedella RJ; Lamba OP
    Exp Eye Res; 1996 Feb; 62(2):191-7. PubMed ID: 8698079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Observation of protein diffusivity in intact human and bovine lenses with application to cataract.
    Tanaka T; Benedek GB
    Invest Ophthalmol; 1975 Jun; 14(6):449-56. PubMed ID: 1132941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phospholipid composition of the rat lens is independent of diet.
    Nealon JR; Blanksby SJ; Abbott SK; Hulbert AJ; Mitchell TW; Truscott RJ
    Exp Eye Res; 2008 Dec; 87(6):502-14. PubMed ID: 18796304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of disulfide-linked crystallins associated with human cataractous lens membranes.
    Kodama T; Takemoto L
    Invest Ophthalmol Vis Sci; 1988 Jan; 29(1):145-9. PubMed ID: 3335427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of d-aspartic acid contents in alpha A-crystallin from normal and age-matched cataractous human lenses.
    Fujii N; Takemoto LJ; Matsumoto S; Hiroki K; Boyle D; Akaboshi M
    Biochem Biophys Res Commun; 2000 Nov; 278(2):408-13. PubMed ID: 11097850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Changes in water-soluble, urea-soluble and membrane intrinsic proteins in human senile cataract].
    Zhao HR; Hu SQ; Ren XH
    Zhonghua Yan Ke Za Zhi; 1994 May; 30(3):186-8. PubMed ID: 7842996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amounts of phospholipids and cholesterol in lipid domains formed in intact lens membranes: Methodology development and its application to studies of porcine lens membranes.
    Raguz M; Mainali L; O'Brien WJ; Subczynski WK
    Exp Eye Res; 2015 Nov; 140():179-186. PubMed ID: 26384651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in calpain II mRNA in young rat lens during maturation and cataract formation.
    Ma H; Shih M; Throneberg DB; David LL; Shearer TR
    Exp Eye Res; 1997 Mar; 64(3):437-45. PubMed ID: 9196396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein-bound and free UV filters in cataract lenses. The concentration of UV filters is much lower than in normal lenses.
    Korlimbinis A; Aquilina JA; Truscott RJ
    Exp Eye Res; 2007 Aug; 85(2):219-25. PubMed ID: 17574241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 13C NMR studies of protein motional dynamics in bovine, human, rat, and chicken ocular lenses.
    Rydzewski JM; Wang SX; Stevens A; Serdahl C; Schleich T
    Exp Eye Res; 1993 Mar; 56(3):305-16. PubMed ID: 8472786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. alpha-Crystallin binding in vitro to lipids from clear human lenses.
    Grami V; Marrero Y; Huang L; Tang D; Yappert MC; Borchman D
    Exp Eye Res; 2005 Aug; 81(2):138-46. PubMed ID: 15967437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phospholipid and protein contents of lens proteolipids in human senile cataract.
    Siddique MA; Tiwary BK; Paul SB
    Eye (Lond); 2010 Apr; 24(4):720-7. PubMed ID: 19590524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deamidation of alpha-A crystallin from nuclei of cataractous and normal human lenses.
    Takemoto L; Boyle D
    Mol Vis; 1999 Feb; 5():2. PubMed ID: 10085374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane cholesterol and phospholipid in consecutive concentric sections of human lenses.
    Li LK; So L; Spector A
    J Lipid Res; 1985 May; 26(5):600-9. PubMed ID: 4020298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.