BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 24873745)

  • 1. Efficient construction of unmarked recombinant mycobacteria using an improved system.
    Yang F; Tan Y; Liu J; Liu T; Wang B; Cao Y; Qu Y; Lithgow T; Tan S; Zhang T
    J Microbiol Methods; 2014 Aug; 103():29-36. PubMed ID: 24873745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of unmarked deletion mutants in mycobacteria.
    Song H; Wolschendorf F; Niederweis M
    Methods Mol Biol; 2009; 465():279-95. PubMed ID: 20560070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis.
    Bardarov S; Bardarov S; Pavelka MS; Sambandamurthy V; Larsen M; Tufariello J; Chan J; Hatfull G; Jacobs WR
    Microbiology (Reading); 2002 Oct; 148(Pt 10):3007-3017. PubMed ID: 12368434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and simple generation of multiple unmarked gene deletions in Mycobacterium smegmatis.
    Mao XJ; Yan MY; Zhu H; Guo XP; Sun YC
    Sci Rep; 2016 Mar; 6():22922. PubMed ID: 26972108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis, Mycobacterium bovis bacillus Calmette-Guérin, and Mycobacterium tuberculosis H37Rv by allelic exchange.
    Pavelka MS; Jacobs WR
    J Bacteriol; 1999 Aug; 181(16):4780-9. PubMed ID: 10438745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of temperature-sensitive plasmids in mycobacteria.
    Portevin D; Malaga W; Guilhot C
    Methods Mol Biol; 2009; 465():229-42. PubMed ID: 20560074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved Xer-cise technology for the generation of multiple unmarked mutants in Mycobacteria.
    Boudehen YM; Wallat M; Rousseau P; Neyrolles O; Gutierrez C
    Biotechniques; 2020 Feb; 68(2):106-110. PubMed ID: 31937110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycobacterial recombineering.
    van Kessel JC; Hatfull GF
    Methods Mol Biol; 2008; 435():203-15. PubMed ID: 18370078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient and simple generation of unmarked gene deletions in Mycobacterium smegmatis.
    Shenkerman Y; Elharar Y; Vishkautzan M; Gur E
    Gene; 2014 Jan; 533(1):374-8. PubMed ID: 24100088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xer site-specific recombination, an efficient tool to introduce unmarked deletions into mycobacteria.
    Cascioferro A; Boldrin F; Serafini A; Provvedi R; Palù G; Manganelli R
    Appl Environ Microbiol; 2010 Aug; 76(15):5312-6. PubMed ID: 20543044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of unmarked mutations in mycobacteria using site-specific recombination.
    Malaga W; Perez E; Guilhot C
    FEMS Microbiol Lett; 2003 Feb; 219(2):261-8. PubMed ID: 12620630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consecutive gene deletions in Mycobacterium smegmatis using the yeast FLP recombinase.
    Stephan J; Stemmer V; Niederweis M
    Gene; 2004 Dec; 343(1):181-90. PubMed ID: 15563844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specialized transduction designed for precise high-throughput unmarked deletions in Mycobacterium tuberculosis.
    Jain P; Hsu T; Arai M; Biermann K; Thaler DS; Nguyen A; González PA; Tufariello JM; Kriakov J; Chen B; Larsen MH; Jacobs WR
    mBio; 2014 Jun; 5(3):e01245-14. PubMed ID: 24895308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycobacterial recombineering.
    Murphy KC; Papavinasasundaram K; Sassetti CM
    Methods Mol Biol; 2015; 1285():177-99. PubMed ID: 25779316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new site-specific integration system for mycobacteria.
    Murry J; Sassetti CM; Moreira J; Lane J; Rubin EJ
    Tuberculosis (Edinb); 2005; 85(5-6):317-23. PubMed ID: 16256438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombineering mycobacteria and their phages.
    van Kessel JC; Marinelli LJ; Hatfull GF
    Nat Rev Microbiol; 2008 Nov; 6(11):851-7. PubMed ID: 18923412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombineering in Mycobacterium tuberculosis.
    van Kessel JC; Hatfull GF
    Nat Methods; 2007 Feb; 4(2):147-52. PubMed ID: 17179933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unmarked gene integration into the chromosome of Mycobacterium smegmatis via precise replacement of the pyrF gene.
    Knipfer N; Seth A; Shrader TE
    Plasmid; 1997; 37(2):129-40. PubMed ID: 9169204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of the mycobacteriophage Ms6 attP core allows the integration of multiple vectors into different tRNAala T-loops in slow- and fast-growing mycobacteria.
    Vultos TD; Méderlé I; Abadie V; Pimentel M; Moniz-Pereira J; Gicquel B; Reyrat JM; Winter N
    BMC Mol Biol; 2006 Dec; 7():47. PubMed ID: 17173678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insertional mutagenesis and illegitimate recombination in mycobacteria.
    Kalpana GV; Bloom BR; Jacobs WR
    Proc Natl Acad Sci U S A; 1991 Jun; 88(12):5433-7. PubMed ID: 2052623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.