These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 24873903)
1. Magnetic control of electrochemical processes at electrode surface using iron-rich graphene materials with dual functionality. Lim CS; Ambrosi A; Sofer Z; Pumera M Nanoscale; 2014 Jul; 6(13):7391-6. PubMed ID: 24873903 [TBL] [Abstract][Full Text] [Related]
2. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Teymourian H; Salimi A; Khezrian S Biosens Bioelectron; 2013 Nov; 49():1-8. PubMed ID: 23708810 [TBL] [Abstract][Full Text] [Related]
3. Reduced Graphene Oxides: Influence of the Reduction Method on the Electrocatalytic Effect towards Nucleic Acid Oxidation. Báez DF; Pardo H; Laborda I; Marco JF; Yáñez C; Bollo S Nanomaterials (Basel); 2017 Jul; 7(7):. PubMed ID: 28677654 [TBL] [Abstract][Full Text] [Related]
4. Inherent electrochemistry and activation of chemically modified graphenes for electrochemical applications. Moo JG; Ambrosi A; Bonanni A; Pumera M Chem Asian J; 2012 Apr; 7(4):759-70. PubMed ID: 22298372 [TBL] [Abstract][Full Text] [Related]
5. Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis. Giovanni M; Poh HL; Ambrosi A; Zhao G; Sofer Z; Šaněk F; Khezri B; Webster RD; Pumera M Nanoscale; 2012 Aug; 4(16):5002-8. PubMed ID: 22763466 [TBL] [Abstract][Full Text] [Related]
6. Building a Novel Chemically Modified Polyaniline/Thermally Reduced Graphene Oxide Hybrid through π-π Interaction for Fabricating Acrylic Resin Elastomer-Based Composites with Enhanced Dielectric Property. Wu SQ; Wang JW; Shao J; Wei L; Yang K; Ren H ACS Appl Mater Interfaces; 2017 Aug; 9(34):28887-28901. PubMed ID: 28776970 [TBL] [Abstract][Full Text] [Related]
7. Thermally reduced graphenes exhibiting a close relationship to amorphous carbon. Wong CH; Ambrosi A; Pumera M Nanoscale; 2012 Aug; 4(16):4972-7. PubMed ID: 22760743 [TBL] [Abstract][Full Text] [Related]
8. Magnetic loading of graphene-nickel nanoparticle hybrid for electrochemical sensing of carbohydrates. Qu W; Zhang L; Chen G Biosens Bioelectron; 2013 Apr; 42():430-3. PubMed ID: 23246656 [TBL] [Abstract][Full Text] [Related]
9. Transition metal (Mn, Fe, Co, Ni)-doped graphene hybrids for electrocatalysis. Toh RJ; Poh HL; Sofer Z; Pumera M Chem Asian J; 2013 Jun; 8(6):1295-300. PubMed ID: 23495248 [TBL] [Abstract][Full Text] [Related]
10. Thermal reduced graphene oxide enhanced in-situ H Li W; Feng Y; An J; Yunfei L; Zhao Q; Liao C; Wang X; Liu J; Li N Environ Res; 2022 Mar; 204(Pt C):112327. PubMed ID: 34748779 [TBL] [Abstract][Full Text] [Related]
11. Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities. Tan SM; Ambrosi A; Khezri B; Webster RD; Pumera M Phys Chem Chem Phys; 2014 Apr; 16(15):7058-65. PubMed ID: 24615543 [TBL] [Abstract][Full Text] [Related]
12. Novel composite material polyoxovanadate@MIL-101(Cr): a highly efficient electrocatalyst for ascorbic acid oxidation. Fernandes DM; Barbosa AD; Pires J; Balula SS; Cunha-Silva L; Freire C ACS Appl Mater Interfaces; 2013 Dec; 5(24):13382-90. PubMed ID: 24308331 [TBL] [Abstract][Full Text] [Related]
13. Hydrothermal preparation and electrochemical sensing properties of TiO(2)-graphene nanocomposite. Fan Y; Lu HT; Liu JH; Yang CP; Jing QS; Zhang YX; Yang XK; Huang KJ Colloids Surf B Biointerfaces; 2011 Mar; 83(1):78-82. PubMed ID: 21111581 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical tuning of oxygen-containing groups on graphene oxides: towards control of the performance for the analysis of biomarkers. Lim CS; Ambrosi A; Pumera M Phys Chem Chem Phys; 2014 Jun; 16(24):12178-82. PubMed ID: 24817612 [TBL] [Abstract][Full Text] [Related]
15. Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials. Pham CV; Repp S; Thomann R; Krueger M; Weber S; Erdem E Nanoscale; 2016 May; 8(18):9682-7. PubMed ID: 27108994 [TBL] [Abstract][Full Text] [Related]
17. Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction. Sofer Z; Jankovský O; Šimek P; Klímová K; Macková A; Pumera M ACS Nano; 2014 Jul; 8(7):7106-14. PubMed ID: 24979344 [TBL] [Abstract][Full Text] [Related]
18. Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction. Parvez K; Yang S; Hernandez Y; Winter A; Turchanin A; Feng X; Müllen K ACS Nano; 2012 Nov; 6(11):9541-50. PubMed ID: 23050839 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Zhou M; Zhai Y; Dong S Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529 [TBL] [Abstract][Full Text] [Related]
20. Chemically Reduced Graphene Oxide for the Assessment of Food Quality: How the Electrochemical Platform Should Be Tailored to the Application. Chng C; Ambrosi A; Chua CK; Pumera M; Bonanni A Chemistry; 2017 Feb; 23(8):1930-1936. PubMed ID: 27935185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]