BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 24874098)

  • 1. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM.
    Blacker TS; Mann ZF; Gale JE; Ziegler M; Bain AJ; Szabadkai G; Duchen MR
    Nat Commun; 2014 May; 5():3936. PubMed ID: 24874098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating mitochondrial redox state using NADH and NADPH autofluorescence.
    Blacker TS; Duchen MR
    Free Radic Biol Med; 2016 Nov; 100():53-65. PubMed ID: 27519271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Profiling of Live Cancer Tissues Using NAD(P)H Fluorescence Lifetime Imaging.
    Blacker TS; Sewell MDE; Szabadkai G; Duchen MR
    Methods Mol Biol; 2019; 1928():365-387. PubMed ID: 30725465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic Enzyme Mapping of Cellular Metabolism by Phasor-Analyzed Label-Free NAD(P)H Fluorescence Lifetime Imaging.
    Leben R; Köhler M; Radbruch H; Hauser AE; Niesner RA
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31703416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-photon FLIM of NAD(P)H and FAD in mesenchymal stem cells undergoing either osteogenic or chondrogenic differentiation.
    Meleshina AV; Dudenkova VV; Bystrova AS; Kuznetsova DS; Shirmanova MV; Zagaynova EV
    Stem Cell Res Ther; 2017 Jan; 8(1):15. PubMed ID: 28129796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ.
    Wakita M; Nishimura G; Tamura M
    J Biochem; 1995 Dec; 118(6):1151-60. PubMed ID: 8720129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].
    Cheng Y; Ren M; Niu Y; Qiao J; Aneba S; Chorvat D; Chorvatova A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1191-200. PubMed ID: 20095467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiphoton NAD(P)H FLIM reveals metabolic changes in individual cell types of the intact cochlea upon sensorineural hearing loss.
    Majumder P; Blacker TS; Nolan LS; Duchen MR; Gale JE
    Sci Rep; 2019 Dec; 9(1):18907. PubMed ID: 31827194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Cellular Redox State Using NAD(P)H Fluorescence Intensity and Lifetime.
    Blacker TS; Berecz T; Duchen MR; Szabadkai G
    Bio Protoc; 2017 Jan; 7(2):. PubMed ID: 28286806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NAD(P)H fluorescence lifetime imaging of live intestinal nematodes reveals metabolic crosstalk between parasite and host.
    Liublin W; Rausch S; Leben R; Lindquist RL; Fiedler A; Liebeskind J; Beckers IE; Hauser AE; Hartmann S; Niesner RA
    Sci Rep; 2022 May; 12(1):7264. PubMed ID: 35508502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity.
    Chacko JV; Eliceiri KW
    Cytometry A; 2019 Jan; 95(1):56-69. PubMed ID: 30296355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitor.
    Obrosova I; Faller A; Burgan J; Ostrow E; Williamson JR
    Curr Eye Res; 1997 Jan; 16(1):34-43. PubMed ID: 9043821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local redox conditions in cells imaged via non-fluorescent transient states of NAD(P)H.
    Tornmalm J; Sandberg E; Rabasovic M; Widengren J
    Sci Rep; 2019 Oct; 9(1):15070. PubMed ID: 31636326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of Pyridine Nucleotides in Biological Samples Using LC-MS/MS.
    Petucci C; Culver JA; Kapoor N; Sessions EH; Divlianska D; Gardell SJ
    Methods Mol Biol; 2019; 1996():61-73. PubMed ID: 31127548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line.
    Wise DD; Shear JB
    Neuroscience; 2004; 128(2):263-8. PubMed ID: 15350639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of angiotensin II on energetics, glucose metabolism and cytosolic NADH/NAD and NADPH/NADP redox in vascular smooth muscle.
    Barron JT; Sasse MF; Nair A
    Mol Cell Biochem; 2004 Jul; 262(1-2):91-9. PubMed ID: 15532713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Mitochondrial Membrane Potential and NADH Redox State in Acute Brain Slices.
    Vinokurov AY; Dremin VV; Piavchenko GA; Stelmashchuk OA; Angelova PR; Abramov AY
    Methods Mol Biol; 2021; 2276():193-202. PubMed ID: 34060042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 22.