These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24874178)

  • 1. An impedance-based flow microcytometer for single cell morphology discrimination.
    Shaker M; Colella L; Caselli F; Bisegna P; Renaud P
    Lab Chip; 2014 Jul; 14(14):2548-55. PubMed ID: 24874178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle Self-Aligning, Focusing, and Electric Impedance Microcytometer Device for Label-Free Single Cell Morphology Discrimination and Yeast Budding Analysis.
    Xie X; Zhang Z; Ge X; Zhao X; Hao L; Cheng Z; Zhou W; Du Y; Wang L; Tian F; Xu X
    Anal Chem; 2019 Nov; 91(21):13398-13406. PubMed ID: 31596074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria.
    Bernabini C; Holmes D; Morgan H
    Lab Chip; 2011 Feb; 11(3):407-12. PubMed ID: 21060945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput and high-resolution flow cytometry in molded microfluidic devices.
    Simonnet C; Groisman A
    Anal Chem; 2006 Aug; 78(16):5653-63. PubMed ID: 16906708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coplanar electrode microfluidic chip enabling accurate sheathless impedance cytometry.
    De Ninno A; Errico V; Bertani FR; Businaro L; Bisegna P; Caselli F
    Lab Chip; 2017 Mar; 17(6):1158-1166. PubMed ID: 28225104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field-free, sheathless cell focusing in exponentially expanding hydrophoretic channels for microflow cytometry.
    Song S; Choi S
    Cytometry A; 2013 Nov; 83(11):1034-40. PubMed ID: 24115760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional acoustic particle focusing enables sheathless chip Coulter counter with planar electrode configuration.
    Grenvall C; Antfolk C; Bisgaard CZ; Laurell T
    Lab Chip; 2014 Dec; 14(24):4629-37. PubMed ID: 25300357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical cell counting process characterization in a microfluidic impedance cytometer.
    Hassan U; Bashir R
    Biomed Microdevices; 2014 Oct; 16(5):697-704. PubMed ID: 24898912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry.
    Holmes D; Pettigrew D; Reccius CH; Gwyer JD; van Berkel C; Holloway J; Davies DE; Morgan H
    Lab Chip; 2009 Oct; 9(20):2881-9. PubMed ID: 19789739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic diagnostic tool for the developing world: contactless impedance flow cytometry.
    Emaminejad S; Javanmard M; Dutton RW; Davis RW
    Lab Chip; 2012 Nov; 12(21):4499-507. PubMed ID: 22971813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences.
    Sun T; Holmes D; Gawad S; Green NG; Morgan H
    Lab Chip; 2007 Aug; 7(8):1034-40. PubMed ID: 17653346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a novel impedance cytometer design and its integration with lateral focusing by dielectrophoresis.
    Mernier G; Duqi E; Renaud P
    Lab Chip; 2012 Nov; 12(21):4344-9. PubMed ID: 22899298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impedance spectroscopy using maximum length sequences: application to single cell analysis.
    Gawad S; Sun T; Green NG; Morgan H
    Rev Sci Instrum; 2007 May; 78(5):054301. PubMed ID: 17552843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer.
    Haandbæk N; Bürgel SC; Heer F; Hierlemann A
    Lab Chip; 2014 Jan; 14(2):369-77. PubMed ID: 24264643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Impedance Cytometer with Inertial Focusing and Liquid Electrodes for High-Throughput Cell Counting and Discrimination.
    Tang W; Tang D; Ni Z; Xiang N; Yi H
    Anal Chem; 2017 Mar; 89(5):3154-3161. PubMed ID: 28264567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unified approach to dielectric single cell analysis: impedance and dielectrophoretic force spectroscopy.
    Valero A; Braschler T; Renaud P
    Lab Chip; 2010 Sep; 10(17):2216-25. PubMed ID: 20664865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free electrical discrimination of cells at normal, apoptotic and necrotic status with a microfluidic device.
    Gou HL; Zhang XB; Bao N; Xu JJ; Xia XH; Chen HY
    J Chromatogr A; 2011 Aug; 1218(33):5725-9. PubMed ID: 21774939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferrofluid mediated nanocytometry.
    Kose AR; Koser H
    Lab Chip; 2012 Jan; 12(1):190-6. PubMed ID: 22076536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.