These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24874178)

  • 21. Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices.
    Cheng X; Liu YS; Irimia D; Demirci U; Yang L; Zamir L; Rodríguez WR; Toner M; Bashir R
    Lab Chip; 2007 Jun; 7(6):746-55. PubMed ID: 17538717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A microfluidic impedance flow cytometer for identification of differentiation state of stem cells.
    Song H; Wang Y; Rosano JM; Prabhakarpandian B; Garson C; Pant K; Lai E
    Lab Chip; 2013 Jun; 13(12):2300-10. PubMed ID: 23636706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.
    Simon P; Frankowski M; Bock N; Neukammer J
    Lab Chip; 2016 Jun; 16(12):2326-38. PubMed ID: 27229300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry.
    Honrado C; McGrath JS; Reale R; Bisegna P; Swami NS; Caselli F
    Anal Bioanal Chem; 2020 Jun; 412(16):3835-3845. PubMed ID: 32189012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies.
    Braschler T; Demierre N; Nascimento E; Silva T; Oliva AG; Renaud P
    Lab Chip; 2008 Feb; 8(2):280-6. PubMed ID: 18231667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic impedance-based flow cytometry.
    Cheung KC; Di Berardino M; Schade-Kampmann G; Hebeisen M; Pierzchalski A; Bocsi J; Mittag A; Tárnok A
    Cytometry A; 2010 Jul; 77(7):648-66. PubMed ID: 20583276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acoustic actuated fluorescence activated sorting of microparticles.
    Jakobsson O; Grenvall C; Nordin M; Evander M; Laurell T
    Lab Chip; 2014 Jun; 14(11):1943-50. PubMed ID: 24763517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations.
    Zhu S; Zhang X; Zhou Z; Han Y; Xiang N; Ni Z
    Talanta; 2021 Oct; 233():122571. PubMed ID: 34215067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes.
    Zhong J; Liang M; Ai Y
    Lab Chip; 2021 Aug; 21(15):2869-2880. PubMed ID: 34236057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-chip non-invasive and label-free cell discrimination by impedance spectroscopy.
    Schade-Kampmann G; Huwiler A; Hebeisen M; Hessler T; Di Berardino M
    Cell Prolif; 2008 Oct; 41(5):830-40. PubMed ID: 18673370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impedance-based viscoelastic flow cytometry.
    Serhatlioglu M; Asghari M; Tahsin Guler M; Elbuken C
    Electrophoresis; 2019 Mar; 40(6):906-913. PubMed ID: 30632175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A dielectrophoretic continuous flow sorter using integrated microelectrodes coupled to a channel constriction.
    Salomon S; Leichlé T; Nicu L
    Electrophoresis; 2011 Jun; 32(12):1508-14. PubMed ID: 21563186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supervised machine learning in microfluidic impedance flow cytometry for improved particle size determination.
    de Bruijn DS; Ten Eikelder HRA; Papadimitriou VA; Olthuis W; van den Berg A
    Cytometry A; 2023 Mar; 103(3):221-226. PubMed ID: 36908134
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional hydrodynamic focusing in a microfluidic Coulter counter.
    Scott R; Sethu P; Harnett CK
    Rev Sci Instrum; 2008 Apr; 79(4):046104. PubMed ID: 18447562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA-based highly tunable particle focuser.
    Kang K; Lee SS; Hyun K; Lee SJ; Kim JM
    Nat Commun; 2013; 4():2567. PubMed ID: 24108276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Label-free hybridoma cell culture quality control by a chip-based impedance flow cytometer.
    Pierzchalski A; Hebeisen M; Mittag A; Bocsi J; Di Berardino M; Tarnok A
    Lab Chip; 2012 Nov; 12(21):4533-43. PubMed ID: 22907524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic impedance cytometer for platelet analysis.
    Evander M; Ricco AJ; Morser J; Kovacs GT; Leung LL; Giovangrandi L
    Lab Chip; 2013 Feb; 13(4):722-9. PubMed ID: 23282651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On-chip high-speed sorting of micron-sized particles for high-throughput analysis.
    Holmes D; Sandison ME; Green NG; Morgan H
    IEE Proc Nanobiotechnol; 2005 Aug; 152(4):129-35. PubMed ID: 16441169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinguishing drug-induced minor morphological changes from major cellular damage via label-free impedimetric toxicity screening.
    Meissner R; Eker B; Kasi H; Bertsch A; Renaud P
    Lab Chip; 2011 Jul; 11(14):2352-61. PubMed ID: 21647498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determining Particle Size and Position in a Coplanar Electrode Setup Using Measured Opacity for Microfluidic Cytometry.
    de Bruijn DS; Jorissen KFA; Olthuis W; van den Berg A
    Biosensors (Basel); 2021 Sep; 11(10):. PubMed ID: 34677309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.