These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 24874183)
1. Noise model based ν-support vector regression with its application to short-term wind speed forecasting. Hu Q; Zhang S; Xie Z; Mi J; Wan J Neural Netw; 2014 Sep; 57():1-11. PubMed ID: 24874183 [TBL] [Abstract][Full Text] [Related]
2. Twin Least Square Support Vector Regression Model Based on Gauss-Laplace Mixed Noise Feature with Its Application in Wind Speed Prediction. Zhang S; Liu C; Wang W; Chang B Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286871 [TBL] [Abstract][Full Text] [Related]
3. A hybrid approach for short-term forecasting of wind speed. Tatinati S; Veluvolu KC ScientificWorldJournal; 2013; 2013():548370. PubMed ID: 24453872 [TBL] [Abstract][Full Text] [Related]
4. A Novel Empirical Mode Decomposition With Support Vector Regression for Wind Speed Forecasting. Ren Y; Suganthan PN; Srikanth N IEEE Trans Neural Netw Learn Syst; 2016 Aug; 27(8):1793-8. PubMed ID: 25222957 [TBL] [Abstract][Full Text] [Related]
5. A combined model for short-term wind speed forecasting based on empirical mode decomposition, feature selection, support vector regression and cross-validated lasso. Wang T PeerJ Comput Sci; 2021; 7():e732. PubMed ID: 34712801 [TBL] [Abstract][Full Text] [Related]
6. Zhang S; Zhou T; Sun L; Wang W; Chang B Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286401 [TBL] [Abstract][Full Text] [Related]
7. Maximum likelihood optimal and robust Support Vector Regression with lncosh loss function. Karal O Neural Netw; 2017 Oct; 94():1-12. PubMed ID: 28732230 [TBL] [Abstract][Full Text] [Related]
8. Incremental learning for ν-Support Vector Regression. Gu B; Sheng VS; Wang Z; Ho D; Osman S; Li S Neural Netw; 2015 Jul; 67():140-50. PubMed ID: 25933108 [TBL] [Abstract][Full Text] [Related]
9. Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction. Ghazvinian H; Mousavi SF; Karami H; Farzin S; Ehteram M; Hossain MS; Fai CM; Hashim HB; Singh VP; Ros FC; Ahmed AN; Afan HA; Lai SH; El-Shafie A PLoS One; 2019; 14(5):e0217634. PubMed ID: 31150467 [TBL] [Abstract][Full Text] [Related]
10. Application of support vector regression to genome-assisted prediction of quantitative traits. Long N; Gianola D; Rosa GJ; Weigel KA Theor Appl Genet; 2011 Nov; 123(7):1065-74. PubMed ID: 21739137 [TBL] [Abstract][Full Text] [Related]
11. Wind Speed Prediction Based on Error Compensation. Jiao X; Zhang D; Wang X; Tian Y; Liu W; Xin L Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430818 [TBL] [Abstract][Full Text] [Related]
12. Experimentally optimal nu in support vector regression for different noise models and parameter settings. Chalimourda A; Schölkopf B; Smola AJ Neural Netw; 2004 Jan; 17(1):127-41. PubMed ID: 14690713 [TBL] [Abstract][Full Text] [Related]
13. A new method for wind speed forecasting based on copula theory. Wang Y; Ma H; Wang D; Wang G; Wu J; Bian J; Liu J Environ Res; 2018 Jan; 160():365-371. PubMed ID: 29073570 [TBL] [Abstract][Full Text] [Related]
16. Short-term wind speed prediction using hybrid machine learning techniques. Gupta D; Natarajan N; Berlin M Environ Sci Pollut Res Int; 2022 Jul; 29(34):50909-50927. PubMed ID: 34251573 [TBL] [Abstract][Full Text] [Related]
17. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting. Men Z; Yee E; Lien FS; Yang Z; Liu Y Int Sch Res Notices; 2014; 2014():972580. PubMed ID: 27382627 [TBL] [Abstract][Full Text] [Related]
18. Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression. Bukhari W; Hong SM Phys Med Biol; 2015 Jan; 60(1):233-52. PubMed ID: 25489980 [TBL] [Abstract][Full Text] [Related]
19. Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel Fisher discriminant analysis. Van Gestel T; Suykens JA; Lanckriet G; Lambrechts A; De Moor B; Vandewalle J Neural Comput; 2002 May; 14(5):1115-47. PubMed ID: 11972910 [TBL] [Abstract][Full Text] [Related]
20. Short-Term Demand Forecasting Method in Power Markets Based on the KSVM-TCN-GBRT. Yang G; Du S; Duan Q; Su J Comput Intell Neurosci; 2022; 2022():6909558. PubMed ID: 35535191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]