BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 24874989)

  • 21. LMO2 Oncoprotein Stability in T-Cell Leukemia Requires Direct LDB1 Binding.
    Layer JH; Alford CE; McDonald WH; Davé UP
    Mol Cell Biol; 2016 Feb; 36(3):488-506. PubMed ID: 26598604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct domains of erythroid Krüppel-like factor modulate chromatin remodeling and transactivation at the endogenous beta-globin gene promoter.
    Brown RC; Pattison S; van Ree J; Coghill E; Perkins A; Jane SM; Cunningham JM
    Mol Cell Biol; 2002 Jan; 22(1):161-70. PubMed ID: 11739731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancer-bound LDB1 regulates a corticotrope promoter-pausing repression program.
    Zhang F; Tanasa B; Merkurjev D; Lin C; Song X; Li W; Tan Y; Liu Z; Zhang J; Ohgi KA; Krones A; Skowronska-Krawczyk D; Rosenfeld MG
    Proc Natl Acad Sci U S A; 2015 Feb; 112(5):1380-5. PubMed ID: 25605944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidation of the role of LMO2 in human erythroid cells.
    Inoue A; Fujiwara T; Okitsu Y; Katsuoka Y; Fukuhara N; Onishi Y; Ishizawa K; Harigae H
    Exp Hematol; 2013 Dec; 41(12):1062-76.e1. PubMed ID: 24041784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus.
    Kim YW; Lee S; Yun J; Kim A
    Biosci Rep; 2015 Mar; 35(2):. PubMed ID: 25588787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The beta -globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation.
    Sawado T; Halow J; Bender MA; Groudine M
    Genes Dev; 2003 Apr; 17(8):1009-18. PubMed ID: 12672691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The LIM-domain binding protein Ldb1 and its partner LMO2 act as negative regulators of erythroid differentiation.
    Visvader JE; Mao X; Fujiwara Y; Hahm K; Orkin SH
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13707-12. PubMed ID: 9391090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ldb1 regulates carbonic anhydrase 1 during erythroid differentiation.
    Song SH; Kim A; Dale R; Dean A
    Biochim Biophys Acta; 2012 Aug; 1819(8):885-91. PubMed ID: 22609543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1.
    Vakoc CR; Letting DL; Gheldof N; Sawado T; Bender MA; Groudine M; Weiss MJ; Dekker J; Blobel GA
    Mol Cell; 2005 Feb; 17(3):453-62. PubMed ID: 15694345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatin loop formation in the β-globin locus and its role in globin gene transcription.
    Kim A; Dean A
    Mol Cells; 2012 Jul; 34(1):1-5. PubMed ID: 22610406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancer looping protein LDB1 regulates hepatocyte gene expression by cooperating with liver transcription factors.
    Liu G; Wang L; Wess J; Dean A
    Nucleic Acids Res; 2022 Sep; 50(16):9195-9211. PubMed ID: 36018801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The human β-globin enhancer LCR HS2 plays a role in forming a TAD by activating chromatin structure at neighboring CTCF sites.
    Kim J; Kang J; Kim YW; Kim A
    FASEB J; 2021 Jun; 35(6):e21669. PubMed ID: 34033138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Islet α-, β-, and δ-cell development is controlled by the Ldb1 coregulator, acting primarily with the islet-1 transcription factor.
    Hunter CS; Dixit S; Cohen T; Ediger B; Wilcox C; Ferreira M; Westphal H; Stein R; May CL
    Diabetes; 2013 Mar; 62(3):875-86. PubMed ID: 23193182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromatin structure of the LCR in the human β-globin locus transcribing the adult δ- and β-globin genes.
    Kim S; Kim YW; Shim SH; Kim CG; Kim A
    Int J Biochem Cell Biol; 2012 Mar; 44(3):505-13. PubMed ID: 22178075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional environment and chromatin architecture interplay dictates globin expression patterns of heterospecific hybrids derived from undifferentiated human embryonic stem cells or from their erythroid progeny.
    Chang KH; Huang A; Han H; Jiang Y; Fang X; Song CZ; Padilla S; Wang H; Qu H; Stamatoyannopoulos J; Li Q; Papayannopoulou T
    Exp Hematol; 2013 Nov; 41(11):967-979.e6. PubMed ID: 23993951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic and additive properties of the beta-globin locus control region (LCR) revealed by 5'HS3 deletion mutations: implication for LCR chromatin architecture.
    Fang X; Sun J; Xiang P; Yu M; Navas PA; Peterson KR; Stamatoyannopoulos G; Li Q
    Mol Cell Biol; 2005 Aug; 25(16):7033-41. PubMed ID: 16055715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ldb1 complexes: the new master regulators of erythroid gene transcription.
    Love PE; Warzecha C; Li L
    Trends Genet; 2014 Jan; 30(1):1-9. PubMed ID: 24290192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus.
    Schübeler D; Francastel C; Cimbora DM; Reik A; Martin DI; Groudine M
    Genes Dev; 2000 Apr; 14(8):940-50. PubMed ID: 10783166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A major role for the TATA box in recruitment of chromatin modifying complexes to a globin gene promoter.
    Gui CY; Dean A
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):7009-14. PubMed ID: 12773626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histone acetylation contributes to chromatin looping between the locus control region and globin gene by influencing hypersensitive site formation.
    Kim YW; Kim A
    Biochim Biophys Acta; 2013 Sep; 1829(9):963-9. PubMed ID: 23607989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.